How to calculate the equation with letter and variable

94 ビュー (過去 30 日間)
HONG CHENG
HONG CHENG 2017 年 5 月 4 日
編集済み: Stephen23 2017 年 10 月 17 日
Dear everyone,
I want to calculate an equation with letter and variable.
Now I can get the variable value presented with the letters I used
but I don't know how to change the letters as real numbers.
this is the example
%declear syms
syms x0 y0 x1 y1 x2 y2 a b p q d positive;
[x0 y0] = solve('(x-p)^2+(y-q)^2=d^2','(p-a)*(y-b)=(x-a)*(q-b)')
then I can get the result
but the problem is how to enter the real number value of letters like
a = 1;
b = 2;
p = 3;
q = 4;
d = 5;
then I can get the numerical value of x, y ???
  1 件のコメント
HONG CHENG
HONG CHENG 2017 年 5 月 4 日
編集済み: HONG CHENG 2017 年 5 月 4 日
Maybe we can use the subs() function to do this
f=subs(solve('(x-p)^2+(2-q)^2=d^2') ,{a,b,p,q,d},{1,2,3,4,5})
but here we just can use one equation.
if anyone have other or better method, please show your idea

サインインしてコメントする。

採用された回答

Star Strider
Star Strider 2017 年 5 月 4 日
The substitution will occur automatically. The problem is that you must put ‘x’, ‘x0’ and ‘y0’ in the equations you want to solve for them.
This will do the substitutions:
syms x0 y0 x1 y1 x2 y2 a b p q d positive
a = 1;
b = 2;
p = 3;
q = 4;
d = 5;
Eq1 = (x-p)^2+(y-q)^2==d^2;
Eq2 = (p-a)*(y-b)==(x-a)*(q-b);
[x0 y0] = solve(Eq1, Eq2);
  9 件のコメント
Walter Roberson
Walter Roberson 2017 年 5 月 7 日
HONG CHENG comments on Star Strider's Answer:
kind and big god in MATLAB
Karan Gill
Karan Gill 2017 年 5 月 9 日
See my answer below for why you only get one solution.

サインインしてコメントする。

その他の回答 (1 件)

Karan Gill
Karan Gill 2017 年 5 月 9 日
編集済み: Stephen23 2017 年 10 月 17 日
Use subs to substitute values, as shown below. You only get one solution because in the other solution, "x" is negative, which is not allowed due to the assumption that it is positive.
BUT if don't substitute values before solving, then you get two solutions because the second solution can be positive under certain conditions. "solve" also issues a warning stating that conditions apply to the solutions. If you use the "ReturnConditions" option, then you get these conditions. Applying these conditions will let you find correct values. See the doc: https://www.mathworks.com/help/symbolic/solve-an-algebraic-equation.html.
syms x y a b p q d positive
eqn1 = (x-p)^2+(y-q)^2 == d^2;
eqn2 = (p-a)*(y-b) == (x-a)*(q-b);
vars = [a b p q d];
vals = sym([1 2 3 4 5]);
eqn1 = subs(eqn1,vars,vals);
eqn2 = subs(eqn2,vars,vals);
[xSol ySol] = solve(eqn1, eqn2)
xSol =
(5*2^(1/2))/2 + 3
ySol =
(5*2^(1/2))/2 + 4
Lastly, do not redeclare symbolic variables as doubles because you are overwriting them. So don't do this.
syms a
a = 1
Just do
a = 1
Or use "subs" to substitute for "a" in an expression
f = a^2
subs(f,a,2)
Karan (Symbolic doc)
  3 件のコメント
Karan Gill
Karan Gill 2017 年 5 月 9 日
Glad to hear that! If my answer was helpful, could you accept it so that others can find the reason.
HONG CHENG
HONG CHENG 2017 年 5 月 10 日
編集済み: HONG CHENG 2017 年 5 月 10 日
Sorry, I will reopen another question. Can you answer in this link - a new question ?
Because I think Another Answer does a lot help for me too.
I will accept the answer in this new link. Thanks a lot !!!1

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!