Estimates from Gaussian Process regression (function: `fitgpr`) for given set of hyperparameter

3 ビュー (過去 30 日間)
I am interested in estimating y using Gaussian Process for given hyperparameters and noise parameter i.e. without optimizing for parameters.
In the following example; [3.5, 6.2, 0.2] are provided as initial guess parameters,
load(fullfile(matlabroot,'examples','stats','gprdata2.mat'))
sigma0 = 0.2;
kparams0 = [3.5, 6.2];
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
'KernelParameters',kparams0,'Sigma',sigma0);
ypred2 = resubPredict(gprMdl2);
But I am interested in seeing model's response y and other properties (like: loglikelihood) precisely for parameters [3.5, 6.2, 0.2] not for optimized ones.
Thanks

採用された回答

Gautam Pendse
Gautam Pendse 2017 年 5 月 20 日
Hi Pankaj,
You probably want to use 'FitMethod','none' in the call to fitrgp. For more info, have a look at the doc for 'FitMethod':
https://www.mathworks.com/help/stats/fitrgp.html#namevaluepairarguments
Hope this helps,
Gautam

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGaussian Process Regression についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by