system of equations with nonlinear constraint
2 ビュー (過去 30 日間)
古いコメントを表示
Hi, I have a system of three linear equations and three unknowns as below:
x(1).*(A11-B)+x(2).*A12+x(3).*A13=0
x(1).*A12 +x(2).*(A22-B)+x(3).*A23=0
x(1).*A13 +x(3).*(A33-B)+x(2).*A23=0
applying the fsolve yields the obvious answer of [0 0 0], Therefore, I have to define the following nonlinear and linear constraints:
x(1)^2+x(2)^2+x(3)^2=1.0 & -1<=x(1),x(2),x(3)<=1
I'm familiar with fmincon but it is applicable for scalar functions when one wants to find min f(x). I wonder how can I solve the aforementioned problem? Thank you so much for your time and attention.
2 件のコメント
採用された回答
Torsten
2017 年 4 月 19 日
編集済み: Torsten
2017 年 4 月 19 日
Then x is a normalized eigenvector to the minimum eigenvalue of the matrix
M=A*transpose(A)
where
A=[A11-B A12 A13;A12 A22-B A23;A13 A23 A33-B]
help eig
Best wishes
Torsten.
3 件のコメント
Torsten
2017 年 4 月 19 日
Take a look at this thread:
https://de.mathworks.com/matlabcentral/answers/328754-rotation-that-maximises-a-vector-length
You search for a vector "that minimizes a vector length".
Best wishes
Torsten.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Nonlinear Optimization についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!