how to plot residual and fitting curve

20 ビュー (過去 30 日間)
farfar
farfar 2017 年 4 月 19 日
編集済み: Image Analyst 2017 年 11 月 14 日
Hi I have two set of data (a,b).
a=[6.91 8.26 2.21 1.19 2.32 8.41 7.3 4.32 2 3.42 3.21 7.54 8.72 2.38 3.1 8.18 5.47 1.27 6.09 7.98 7.69 5.39 7.35 7.33 5.3];
b=[17.52 1.77 14.97 7.5 15.09 9.4 17.36 22.69 12.87 19.16 19.06 14.75 9.83 17.61 18.63 11.15 23.89 10.75 22.33 14.29 16.77 22.41 16.63 17.42 21.37];
and I plot the linear regression line for it. how can I plot residual and the least square quadratic regression line ? thanks
figure(1)
scatter(a,b)
hl = lsline;
B = [ones(size(hl.XData(:))), hl.XData(:)]\hl.YData(:);
Slope = B(2)
Intercept = B(1)

採用された回答

Image Analyst
Image Analyst 2017 年 4 月 19 日
This works well:
a=[6.91 8.26 2.21 1.19 2.32 8.41 7.3 4.32 2 3.42 3.21 7.54 8.72 2.38 3.1 8.18 5.47 1.27 6.09 7.98 7.69 5.39 7.35 7.33 5.3];
b=[17.52 1.77 14.97 7.5 15.09 9.4 17.36 22.69 12.87 19.16 19.06 14.75 9.83 17.61 18.63 11.15 23.89 10.75 22.33 14.29 16.77 22.41 16.63 17.42 21.37];
% First need to sort a otherwise when we go to plot it, it will look like a mess!
[a, sortOrder] = sort(a, 'ascend');
b = b(sortOrder); % Need to sort b the same way.
% First compute the linear fit.
linearCoeffs = polyfit(a, b, 1);
Slope = linearCoeffs(2)
Intercept = linearCoeffs(1)
% Plot training data and fitted data.
subplot(2, 1, 1);
aFitted = a; % Evalutate the fit as the same x coordinates.
bFitted = polyval(linearCoeffs, aFitted);
plot(a, b, 'rd', 'MarkerSize', 10);
hold on;
plot(aFitted, bFitted, 'b-', 'LineWidth', 2);
grid on;
xlabel('a', 'FontSize', 20);
ylabel('b', 'FontSize', 20);
% Plot residuals as lines from actual data to fitted line.
for k = 1 : length(a)
yActual = b(k);
yFit = bFitted(k);
x = a(k);
line([x, x], [yFit, yActual], 'Color', 'm');
end
% Do the same for a quadratic fit.
quadraticCoeffs = polyfit(a, b, 2);
% Plot training data and fitted data.
subplot(2, 1, 2);
aFitted = a; % Evalutate the fit as the same x coordinates.
bFitted = polyval(quadraticCoeffs, aFitted);
plot(a, b, 'rd', 'MarkerSize', 10);
hold on;
plot(aFitted, bFitted, 'b-', 'LineWidth', 2);
grid on;
xlabel('a', 'FontSize', 20);
ylabel('b', 'FontSize', 20);
% Plot residuals as lines from actual data to fitted line.
for k = 1 : length(a)
yActual = b(k);
yFit = bFitted(k);
x = a(k);
line([x, x], [yFit, yActual], 'Color', 'm');
end
  4 件のコメント
David Dalton
David Dalton 2017 年 11 月 14 日
The equation of the fitted curve is a polynomial (first order) "polyfit(a, b, 1);" i.e. a linear fit... y=mx +c, where . where is has shown that the Intercept is 'c' and the Slope is m
Image Analyst
Image Analyst 2017 年 11 月 14 日
編集済み: Image Analyst 2017 年 11 月 14 日
bFitted = polyval(linearCoeffs, aFitted);
is essentially doing this:
bFitted = linearCoeffs(1) * aFitted + linearCoeffs(2);
and
bFitted = polyval(quadraticCoeffs, aFitted);
is essentially doing this:
bFitted = quadraticCoeffs(1) .* aFitted .^ 2 + quadraticCoeffs(2) .* aFitted + quadraticCoeffs(3);

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangePolynomials についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by