using wavelet denoising as preprocessing function with real time data.

1 回表示 (過去 30 日間)
Emiliano Rosso
Emiliano Rosso 2017 年 4 月 12 日
When I train a neural network I need to process the training data X with multivariate wavelet denoising obtaining a new data set denoised X_den.
level = 4;
wname = 'sym2';
tptr = 'heursure';
sorh = 's';
mode = 'asym';
SCAL ='mln';
npc_app = 'none';
npc_fin = 'none';
[X_den, npc, nestco] = wmulden(X, level,wname,'mode',mode, npc_app, ...
npc_fin, tptr, sorh);
[mynet,tr]=train(mynet,X,Y);
After training I need to use 'mynet' to calculate the output of unknown data X(i).
output(i)=mynet(X(i));
Unknown data is obtained in realtime one by one and ,to be consistent with the trained network, I must denoise X(i) using the same Wavelet's parameters calculated previously.
But manual doesn't help me...
Thanks.

回答 (0 件)

カテゴリ

Help Center および File ExchangeDenoising and Compression についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by