Layer 4 is expected to have a different size(Convolutional Neural Network)?
1 回表示 (過去 30 日間)
古いコメントを表示
Hi, I am working on the segmentation of retina bloodvessels with CNN. While I compose my CNN structure, I come across a problem with the size of Layer 4 which is conv2 and can not train the network. My images have 625x625X1 gray images and my network structure is below. I appreciate your help already, thanks.
if true
% code
end
inputLayer = imageInputLayer([625 625 1]);
conv1 = convolution2dLayer(25,25 , 'Stride', 25, 'Padding', 0, 'NumChannels', 1 );
relu1 = reluLayer;
conv2 = convolution2dLayer(4,22, 'Stride', 1, 'Padding', 0, 'NumChannels', 12);
relu2 = reluLayer;
norm2 = crossChannelNormalizationLayer(5);
pool2 = maxPooling2dLayer(2, 'Stride', 2, 'Padding', 1); %subsampling
conv3 = convolution2dLayer(4,8 , 'Stride', 1, 'Padding', 0, 'NumChannels', 12);
relu3 = reluLayer;
norm3 = crossChannelNormalizationLayer(5);
pool3 = maxPooling2dLayer(2, 'Stride', 2, 'Padding', 1); %subsampling
fc4 = fullyConnectedLayer(1100);
relu4 = reluLayer;
drop4 = dropoutLayer(0.5);
fc5 = fullyConnectedLayer(1);
SMAX = softmaxLayer;
ClassOut = classificationLayer;
0 件のコメント
採用された回答
Huma Chaudhry
2020 年 6 月 25 日
Most likely the issue is with the DEPTH of the block. Check the network parameters and see if the input network and output network have suitable depth.
0 件のコメント
その他の回答 (1 件)
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!