Unexpected complex coefficients in a matrix
2 ビュー (過去 30 日間)
古いコメントを表示
Hello, im trying to create a panel method for the study of an airfoil. Inside this problem, i have to obtain a matrix by combination of points created which define the panel distributions and their middle points. So the code is:
for n=1:201
x(n)= 1/2-1/2*cos((n-1)*pi/200);
end
for n=1:200
Pc(n)=(x(n)+x(n+1))/2;
end
for i=1:200
for j=1:200
B(i,j)=(-((Pc(i)-x(j+1))/(x(j+1)-x(j)))*log((Pc(i)-x(j+1))/(Pc(i)-x(j)))-1);
end
end
So, in theory, the matrix B should be not complex at all, with its main diagonal full of just '-1' in each tearm, and that main diagonal should be dominant compared to the rest of coefficients of the matrix.
0 件のコメント
採用された回答
David Goodmanson
2017 年 3 月 30 日
Hello Javier, The only opportunity here to get a complex number is if the argument of the log term is negative. For all the nondiagonal terms of B you are all right, but for i=j the code produces log(-1) and you get an extra i pi/2 on the diagonal.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Airfoil tools についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!