How to perform fft
3 ビュー (過去 30 日間)
古いコメントを表示
I have 1000 samples from an experiment with frequency Fs=67890 Hz. How can I perform fft on them? I followed the guide here https://uk.mathworks.com/help/matlab/ref/fft.html but it seems that the dominant frequency is zero which has no physical meaning.
These are my data
x =
0.3551
0.2308
0.3209
0.4527
0.4606
0.4511
0.4925
0.4769
0.5424
0.4698
0.4246
0.4502
0.5823
0.5451
0.4235
0.4062
0.3832
0.2749
0.1591
0.1889
0.4155
0.3840
0.3582
0.1852
0.2677
0.2454
0.2458
0.2100
0.1469
0.1186
0
0.4154
0.4807
0.4320
0.4072
0.3352
0.3357
0.2770
0.2801
0.3578
0.2703
0.3626
0.0998
0.3656
0.2590
0.4388
0.4144
0.2631
0
0.1076
0
0.4535
0.4626
0.4159
0.3686
0.4763
0.2582
0.2961
0.3691
0.3860
0.3875
0.4018
0.4292
0.3921
0.3128
0.4884
0.3153
0.2672
0.3448
0.3787
0.4799
0.3870
0.3534
0.3968
0.3006
0.3119
0.3585
0.1352
0.4154
0.3323
0.3733
0.3232
0.4116
0.3276
0.4852
0.3715
0.3991
0.3766
0.4866
0.3483
0.2736
0.3153
0.4049
0.3774
0.3071
0.3831
0.3992
0.3661
0.3337
0.1616
0.3305
0.4556
0.5053
0.4209
0.2868
0.2666
0.3057
0.4016
0.2579
0.4286
0.1672
0.4614
0.3814
0.4272
0.3374
0.4215
0.4788
0.3943
0.4097
0.3937
0.4230
0.4981
0.4821
0.1748
0.4015
0.5066
0.4959
0.4267
0.4692
0.3354
0.2919
0.5676
0.4875
0.4957
0.4122
0.5627
0.4573
0.3724
0.4320
0.4127
0.3655
0.3132
0.1982
0.2905
0.3757
0.5282
0.4584
0.4669
0.4059
0.3229
0.4696
0.3960
0.5024
0.4505
0.4084
0.4720
0.4251
0.3683
0.3791
0.3650
0.2426
0.3169
0.4405
0.4129
0.4839
0.3578
0.3550
0.4090
0.4063
0.4497
0.5195
0.4645
0.4514
0.4375
0.3405
0.5263
0.4195
0.3746
0.2887
0.4121
0.3987
0.4428
0.4065
0.3340
0.3511
0.3328
0.3698
0.4988
0.3478
0.2817
0.2795
0.4926
0.3976
0.3728
0.4816
0.4690
0.4328
0.6150
0.1455
0.3981
0.3184
0.4321
0.3678
0.3407
0.2930
0.3325
0.5747
0.5205
0.4418
0.4604
0.3597
0.3404
0.3153
0.5779
0.3666
0.3215
0.2842
0.2314
0.2940
0.3745
0.3215
0.2711
0.3004
0.3946
0.3942
0.3256
0.2587
0.3177
0.2474
0.2057
0.4025
0.4435
0.4262
0.3123
0.3033
0.3595
0.3224
0.5162
0.5210
0.5185
0.5082
0.5174
0.4634
0.4224
0.5525
0.4637
0.5132
0.5806
0.3519
0.5952
0.5103
0.4021
0.3890
0.3671
0.5863
0.3946
0.3198
0.1014
0.4934
0.4089
0.5890
0.4601
0.5628
0.5392
0.4553
0.4755
0.5468
0.4478
0.4900
0.3323
0.2200
0.4340
0.4119
0.4075
0.3577
0.5101
0.3585
0.3939
0.4366
0.3738
0.3934
0.4416
0.4464
0.3510
0.3791
0.4289
0.3966
0.3113
0.2998
0.4251
0.4033
0.3393
0.3843
0.4246
0.4224
0.4072
0.2900
0.4400
0.5314
0.4580
0.4382
0.4118
0.4298
0.5275
0.4492
0.4100
0.4098
0.4530
0.4531
0.4177
0.5175
0.2001
0.5330
0.4534
0.4613
0.0637
0.4619
0.5318
0.4129
0.3292
0.3293
0.4428
0.3560
0.4558
0.3736
0.2481
0.3881
0.3586
0.3284
0.0465
0.3070
0.4227
0.3891
0.3911
0.5650
0.3529
0.3481
0.3482
0.3682
0.5319
0.5387
0.1824
0.3062
0.4315
0.4625
0.3685
0.5253
0.4801
0.5584
0.4634
0.5326
0.4494
0.4534
0.4064
0.3226
0.1444
0.4603
0.4277
0
0.3656
0.4511
0.5926
0.4544
0.4301
0.3542
0.3607
0.3684
0.4694
0.5180
0.3940
0.4657
0.3901
0.4060
0.3740
0.3351
0.3571
0.3845
0.3225
0.4296
0.3675
0.4469
0.3926
0.3571
0.3877
0.2835
0.4564
0.4695
0.3038
0.4322
0.3454
0.4157
0.4131
0.3656
0.3244
0.3835
0.3835
0.3669
0.3769
0.3392
0.4072
0.4156
0.4026
0.4092
0.3624
0.4615
0.3921
0.4848
0.4077
0.2904
0.3404
0.3485
0.4472
0.4097
0.3488
0.3555
0.2958
0.1905
0.2594
0.5082
0.3526
0.5096
0.2486
0.3777
0.3662
0.4036
0.4170
0.4132
0.4760
0.4813
0.2767
0.4714
0.3762
0.3883
0.2067
0.1974
0.3166
0.3852
0.2576
0.3949
0.2443
0.3779
0.4300
0.3881
0.3786
0.3516
0.4147
0.3850
0.4277
0.4620
0.4737
0.4113
0.3448
0.3532
0.3431
0.2336
0.4660
0.4304
0.4478
0.2664
0.3472
0.3404
0.3530
0.5004
0.4685
0.4902
0.5056
0.4876
0.3388
0.3673
0.4873
0.3627
0.3553
0.3385
0.3725
0.5111
0.4345
0.3356
0.3316
0.3864
0.3736
0.3033
0.4409
0.4224
0.3873
0.3507
0.3317
0.3222
0.2853
0.3617
0.4143
0.4293
0.3870
0.3259
0.4120
0.3762
0.3981
0.4022
0.3711
0.3616
0.4801
0.3860
0.2593
0.5820
0.4110
0.4032
0.4109
0.3933
0.4776
0.2430
0.4151
0.4863
0.3633
0.1881
0.1723
0.4596
0.3971
0.3804
0.4301
0.2390
0.4319
0.3753
0.4073
0.4224
0.4255
0.4830
0.3504
0.3461
0.1993
0.4117
0.4678
0.4710
0.3577
0.3979
0.3993
0.3446
0.3214
0.3113
0.3695
0.3847
0.4664
0.4420
0.3579
0.5084
0.4741
0.4416
0.4036
0.3741
0.4747
0.5657
0.4787
0.4972
0.3841
0.2781
0.4447
0.5256
0.4557
0.4701
0.4399
0.3622
0.3493
0.3782
0.3784
0.6737
0.5224
0.4507
0.2935
0.4661
0.3368
0.3713
0.4094
0.3704
0.4510
0.3874
0.4808
0.3836
0.4163
0.2954
0.4038
0.3723
0.3454
0.3572
0.2956
0.3123
0.3045
0.3775
0.3586
0.3899
0.3283
0.2579
0.3975
0.3386
0.3333
0.3667
0.2439
0.3291
0.4948
0.4187
0.4469
0.3125
0.2881
0.1765
0.3667
0.4266
0.4227
0.4985
0.3694
0.3063
0.3647
0.3031
0.4227
0.4508
0.3426
0.2608
0.3380
0.4410
0.2822
0.3007
0.2079
0.3175
0.2548
0.2257
0.2664
0.2629
0.3153
0.2829
0.1878
0.2932
0.4240
0.3506
0.3450
0.3436
0.3147
0.4307
0.3297
0.3263
0.2626
0.3670
0.3903
0.3504
0.3635
0.3506
0.3645
0.3349
0.3742
0.4376
0.3087
0.1669
0.5031
0.4398
0.3169
0.1251
0.3737
0.4122
0.3529
0.3419
0.3728
0.3230
0.3516
0.3272
0.4056
0.4307
0.4187
0.3042
0.3735
0.3499
0.4240
0.1846
0.2853
0.2608
0.3536
0.3915
0.4461
0.4830
0.4267
0.2480
0.4508
0.1829
0.2214
0.3592
0.4563
0.2695
0.3125
0.2981
0.4959
0.3519
0.1361
0.3236
0.3682
0.3274
0.4352
0.3589
0.3794
0.3441
0.4345
0.3739
0.3811
0.3532
0.3125
0.4182
0.2854
0.3541
0.3988
0.4035
0.3540
0.3104
0.4531
0.5163
0.5809
0.3362
0.4588
0.4724
0.4871
0.4134
0.4033
0.3325
0.4309
0.3734
0.3137
0.3562
0.4370
0.2704
0.3935
0.3315
0.3020
0.3531
0.2427
0.3931
0.3654
0.3365
0.5205
0.3245
0.6086
0.4521
0.3837
0.4901
0.3527
0.4278
0.2909
0.3649
0.3479
0.2947
0.5558
0.4566
0.5902
0.4304
0.5311
0.5395
0.3745
0.5311
0.3001
0.4030
0.4117
0.3925
0.4652
0.3820
0.2739
0.4634
0.3541
0.3096
0.3282
0.3180
0.2612
0.2147
0.4373
0.4462
0.4324
0.4857
0.2976
0.3247
0.3276
0.3106
0.5885
0.5510
0.3492
0.3284
0.4325
0.4530
0.5664
0.5522
0.4787
0.4568
0.4210
0.5093
0.4775
0.4069
0.4151
0.4295
0.4312
0.3926
0.3863
0.3583
0.4121
0.3848
0.3773
0.3826
0.3374
0.3023
0.3368
0.4261
0.2167
0.4879
0.3032
0.2540
0.5302
0.4484
0.4872
0.3173
0.3800
0.4337
0.3698
0.3272
0.2498
0.3854
0.4042
0.4299
0.4018
0.3248
0.3756
0.3824
0.4029
0.4295
0.3573
0.3036
0.0557
0.4097
0.5186
0.4060
0.3733
0.2700
0.4013
0.2437
0.4369
0.3374
0.3853
0.4096
0.3145
0.3664
0.4738
0.2346
0.3548
0.2804
0.4698
0.4039
0.4628
0.4387
0.3089
0.3981
0.4727
0.4335
0.3591
0.4623
0.3922
0.4100
0.3585
0.4101
0.3834
0.2742
0.2886
0.4118
0.4812
0.4434
0.4607
0.3134
0.0859
0.1066
0.3441
0.2788
0.3310
0.4330
0.3551
0.4324
0.4427
0.3585
0.4497
0.1920
0.3622
0.4184
0.4762
0.4427
0.4545
0.4054
0.4440
0.3977
0.5034
0.5101
0.3951
0.5061
0.4242
0.4591
0.5080
0.4194
0.6229
0.3667
0.4874
0.4718
0.4996
0.2885
0.4989
0.5071
0.4529
0.5001
0.4165
0.4620
0.4430
0.3566
0.3709
0.4315
0.4694
0.3501
0.3343
0.4227
0.3484
0.3737
0.1854
0.4691
0.4328
0.4059
0.4462
0.4397
0.3578
0.3274
0.4586
0.4864
0.5225
0.3509
0.4212
0.4003
0.4854
0.1942
0.4785
0.4362
0.4213
0.4979
0.4989
0.3758
0.4904
0.6655
0.4860
0.4498
0.4712
0.3502
0.3666
0.3871
0.5061
0.3993
0.2872
0.3147
0.3531
0.4126
0.4546
0.4136
0.4674
0.4634
0.4877
0.4136
0.3401
0.4442
0.3997
0.3753
0.4675
0.3769
0.3556
0.3799
0.5048
0.3805
0.4656
0.4621
0.3986
0.2977
0.3280
0.4630
0.4375
0.3109
0.3265
0.4582
0.4432
0.3801
0.4558
0.4408
0.4279
0.3974
0.3856
0.4107
0.4463
0.4646
0.3674
0.4938
0.3389
0.4625
0.3187
0.3233
0.4389
0.3224
0.3140
0.4371
0.3664
0.4664
0.4350
0.4211
0.3415
and here is the code I have used for the fft
fs=67890;
T = 1/fs; % Sampling period
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
y = fft(x);
P2 = abs(y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = fs*(0:(L/2))/L;
subplot(2,1,1), plot(t,x),title('original data'),ylabel('x'),xlabel('t')
subplot(2,1,2), plot(f,P1),title('fft'),ylabel('magnitude'),xlabel('frequency')
This gives me this image
Hope it's clear
5 件のコメント
Adam
2017 年 2 月 23 日
So just do what Rik Wisselink suggests to zero-centre your data or simply remove the 0-frequency component from the final result and plot it without if you just want to look at the frequency spectrum.
採用された回答
Rik
2017 年 2 月 23 日
[moved from comments]
To remove the 0Hz-component from the analysis, use y=fft(x-mean(x));
0 件のコメント
その他の回答 (1 件)
Pooja Patel
2017 年 2 月 23 日
- amp1 = abs(fft(x1)); %Retain Magnitude
- % amp11 = amp1(1:Nsamps1/2); %Discard Half of Points
- % f11 = Fs*(0:Nsamps1/2-1)/Nsamps1; %Prepare freq data for plot
- f11 = 0:(fs1/Nsamps1):1000; %Prepare freq data for plot
- amp11 = amp1(1:length(f11)); % keep data till 1kHz
- plot(f11,amp11);
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Spectral Measurements についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!