how to plot a surface in MATLAB?

2 ビュー (過去 30 日間)
safi58
safi58 2017 年 2 月 3 日
コメント済み: Walter Roberson 2017 年 2 月 3 日
lamda=0.218;
rl=2.2;
N=20
[fi, fn] = meshgrid(linspace(10,180,N),linspace(1,2,N));
gamma=pi./fn;
x=1-cosd(fi);
a=1-cosd(fi);
b=(gamma/rl)*(1-0.5*(1-cosd(fi)));
c=(0.25*lamda*(fi.*pi/180).^2)*(1-cosd(fi));
d=0.5*lamda*(fi.*pi/180).^2;
e=0.5*(fi.*pi/180).^2*lamda;
f=0.5*(fi.*pi/180)*lamda*sind(fi);
g=(0.5*(fi.*pi/180).^2*lamda)*(1-cosd(fi));
h=(0.25*(fi.*pi/180)*lamda*gamma)*(1-cosd(fi));
den=a+b-c+d-e+f-h+g;
Gdc=x./den
surf(fi, fn, Gdc, 'edgecolor', 'b')
I have to plot a surface by these equations but it is not giving me what i expected. Can anyone help me?
  2 件のコメント
John BG
John BG 2017 年 2 月 3 日
is this what you expect?
.
John BG
safi58
safi58 2017 年 2 月 3 日
Hi, Jon. No, I would not expect it. I would expect like this

サインインしてコメントする。

採用された回答

Walter Roberson
Walter Roberson 2017 年 2 月 3 日
You did not give us any ideas what you were expecting so it is difficult to debug.
Possibly in c, g, h, you want .* (1-cosd(fi)) instead of * (1-cosd(fi))
By the way, for efficiency you should calculate (1-cosd(fi)) only once and use the result multiple times.
  4 件のコメント
safi58
safi58 2017 年 2 月 3 日
編集済み: Walter Roberson 2017 年 2 月 3 日
Gdc=(1-cos(fi))/((1-cosd(fi))+((gamma/rl)*(1-0.5.*(1-cosd(fi))))-((0.25*lamda*(fi.*pi/180).^2).*(1-cosd(fi)))+(0.5*lamda*(fi.*pi/180).^2)-(0.5*(fi.*pi/180).^2*lamda)+(0.5*(fi.*pi/180)*lamda.*sind(fi))-((0.25*(fi.*pi/180)*lamda*gamma).*(1-cosd(fi)))+(0.5*(fi.*pi/180).^2*lamda).*(1-cosd(fi)))
where fi= 0 to 180 degree, fn=0.1 to 5, lamda= 0.218, rl=2.2, gamma=pi/fn
Walter Roberson
Walter Roberson 2017 年 2 月 3 日
I was hoping for mathematical equations, to reduce the ambiguity of .* compared to * as you coded some multiplications with * (algebraic matrix multiplication).
What you just posted contains in part
+(0.5*lamda*(fi.*pi/180).^2)-(0.5*(fi.*pi/180).^2*lamda)
As lamda is a scalar rather than a matrix, the lamda can be moved in front in both subexpressions,
+(0.5*lamda*(fi.*pi/180).^2)-(0.5*lamda*(fi.*pi/180).^2)
and you can see that the two sub-expressions are the same but of opposite signs and so will cancel out to 0. In your original question these were d and e
In the below code I have left them in as expressions d and e even though they mathematically cancel out, so as to make it easier for you to find the place that will have to be changed.
N = 50;
fi = linspace(0, 180, N) * pi/180;
fn = linspace(0.1, 5, N);
[FI, FN] = ndgrid(fi, fn);
lamda= 0.218;
rl = 2.2;
GAMMA = pi ./ FN;
cosFI = cos(FI);
M1cosFI = 1 - cosFI;
FIlamda = lamda .* FI;
FI2lamda = FIlamda .* FI;
d = (0.5*FI2lamda);
e = (0.5*FI2lamda);
Gdc = M1cosFI ./ (M1cosFI + ((GAMMA/rl) .* (1-0.5.*M1cosFI)) - ((0.25*FI2lamda).*M1cosFI) + d - e + (0.5*FIlamda.*sin(FI)) - ((0.25*FIlamda.*GAMMA).*M1cosFI) + (0.5*FI2lamda).*M1cosFI);
surf(FI, FN, Gdc)
This implements the equations fairly efficiently, but the outcome is not like you had hoped, which is partly due to the problem with d and e. But only partly -- over those ranges, these equations have a bunch of narrow peaks that would be difficult to miss if you happened to plot at the wrong resolution or with slightly the wrong locations.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by