Eucliedan Distances In two Arrays

1 回表示 (過去 30 日間)
Osita Onyejekwe
Osita Onyejekwe 2016 年 11 月 18 日
回答済み: Greg Dionne 2016 年 11 月 18 日
I have an array of (X-Y) Coordinates,
Observed_Signal_Positive_Inflection_Points_Coordinates =
0.1040 -0.0432
0.2090 -0.0264
0.3140 -0.0096
0.4180 -0.0527
0.5230 -0.0359
0.6280 -0.0191
0.7330 -0.0023
0.8370 -0.0455
0.9420 -0.0287
Using each of the 9 coordinates I want to find its distances from a second array of (X-Y) coordinates (D = sqrt(X^2+Y^2))
Positive_Inflection_Points_Coordinates_denoised =
0.0020 0.8093
0.0040 0.7637
0.0070 0.7494
0.0130 0.4747
0.0250 0.6108
0.0260 0.6134
0.0980 -0.1331
0.1000 0.0740
0.1030 0.1959
0.1880 -0.5077
0.1980 -0.2024
0.2020 0.1651
0.2060 0.2103
0.2090 0.3228
0.2120 0.4626
0.2970 -0.5625
0.3050 -0.3444
0.3130 -0.0907
0.3150 0.0769
0.3200 0.2399
0.3950 -0.7348
0.4000 -0.6530
0.4130 -0.2682
0.4150 -0.1705
0.4170 -0.0756
0.4190 0.0999
0.4200 0.1384
0.4220 0.2145
0.4260 0.4140
0.5010 -0.7668
0.5150 -0.4427
0.5190 -0.2756
0.5240 -0.0631
0.5260 0.0475
0.5290 0.1839
0.6030 -0.5451
0.6080 -0.5282
0.6260 -0.0955
0.6280 0.0680
0.6320 0.2191
0.6530 0.7563
0.7240 -0.4235
0.7300 -0.1596
0.7330 -0.0320
0.7350 0.0883
0.7380 0.2280
0.8310 -0.2144
0.8320 -0.1546
0.8340 -0.0583
0.8600 0.6336
0.8620 0.6169
0.9320 -0.5955
0.9330 -0.5314
0.9340 -0.4676
0.9370 -0.2955
0.9410 -0.1334
0.9430 0.1233
0.9460 0.1775
Using each coordinate from the first, I want to find the minimal Euclidean Distance from the second set. How do I do this given that both arrays are of different length? Basically, I will have a final set of X-Y Coordinates (9 in total) that minimize the euclidean distance based on testing each of the first coordinates against every single set in the second.

採用された回答

Jan
Jan 2016 年 11 月 18 日
編集済み: Jan 2016 年 11 月 18 日
There are more sophisticated solutions, but what about a simple loop?
X = Observed_Signal_Positive_Inflection_Points_Coordinates;
Y = Positive_Inflection_Points_Coordinates_denoised;
nX = size(X, 1);
Result = zeros(1, nX)
for k = 1:nX
tmp = (X(k, 1) - Y(:, 1)) .^ 2 + (X(k, 2) - Y(:, 2)) .^ 2;
[dummy, Result(k)] = min(tmp, [], 1);
end
Or in R2016b:
tmp = sum((X(k, :) - Y) .^ 2, 2);
Note: You can omit the expensive sqrt(), because it does not change the property of beeing the minimum.
  2 件のコメント
Osita Onyejekwe
Osita Onyejekwe 2016 年 11 月 18 日
thank you so much. That works. Now can you help me index the coordinates in the second array associated with the minimized distance
dpb
dpb 2016 年 11 月 18 日
That's what the Result above is for each of the values in X.
Or see alternate solution...which also returns them as the second optional output.

サインインしてコメントする。

その他の回答 (2 件)

dpb
dpb 2016 年 11 月 18 日
Given first/second sets are X,Y, respectively,
[D,I]=pdist2(Y,X,'euclid','smallest',1); % doc pdist2 for details

Greg Dionne
Greg Dionne 2016 年 11 月 18 日
You can also use findsignal if you have a recent copy of the Signal Processing Toolbox, which has some additional normalization and scaling options. (See also example using findsignal)
Even so, I think you'll want to massage your data a little bit to get a good result. The first column of both your observed and denoised move fairly linearly from 0 to 1; the second column looks like it is centered at 0.03 in your observed data, and centered at the origin in your denoised.
Was this an attempt at normalization?

カテゴリ

Help Center および File ExchangeStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by