Adding uneven matrices

14 ビュー (過去 30 日間)
B T
B T 2012 年 3 月 6 日
コメント済み: Walter Roberson 2018 年 2 月 14 日
Hey guys,
is there a method(aka function) by which I can add two matrices that aren't the same size and make it so that the matrices become of equivalent size by being filled with zeros in the remaining space?
Thanks
[Merged information from Answer]
It would be like ..
a=ones(150,91)*2
b=ones(141,100)*3
a+b
So, is there a way to make the matrices even but filling them with zeros? (adding 0 more rows to b, and 9 more columns to a of value=0) ...
Thanks!
  2 件のコメント
Andrei Bobrov
Andrei Bobrov 2012 年 3 月 6 日
please get the your example
Walter Roberson
Walter Roberson 2012 年 3 月 6 日
There are over 100,000 different possible results for that calculation. You need to be very specific about which elements are to be added to which elements.

サインインしてコメントする。

回答 (2 件)

Jan
Jan 2012 年 3 月 6 日
a = ones(150,91)*2
b = ones(141,100)*3
c = AddFill(a, b);
function c = AddFill(a, b);
sa = size(a);
sb = size(b);
c = zeros(max(sa, sb)); % Pre-allocate
c(1:sa(1), 1:sa(2)) = a; % Assign a
c(1:sb(1), 1:sb(2)) = c(1:sb(1), 1:sb(2)) + b; % Add b
  2 件のコメント
Ismail Qeshta
Ismail Qeshta 2018 年 2 月 14 日
Hi Jan. Can you please let me know how to modify your code for three unequal matrices instead of two? Thank you.
Walter Roberson
Walter Roberson 2018 年 2 月 14 日
function d = AddFill(a, b, c);
sa = size(a);
sb = size(b);
sc = size(c);
d = zeros(max([sa; sb; sc])); % Pre-allocate
d(1:sa(1), 1:sa(2)) = a; % Assign a
d(1:sb(1), 1:sb(2)) = d(1:sb(1), 1:sb(2)) + b; % Add b
d(1:sc(1), 1:sc(2)) = d(1:sc(1), 1:sc(2)) + c; % Add c

サインインしてコメントする。


Andrei Bobrov
Andrei Bobrov 2012 年 3 月 6 日
variant (one of 100000) :)
function out = addiffmatrix(varargin)
n = cellfun('ndims',varargin);
N = max(n);
sz = cell2mat(cellfun(@(x)[size(x) ones(1,N - numel(size(x)))],varargin(:),'un',0));
mm = arrayfun(@(i1)1:i1,sz,'un',0);
m1 = zeros(max(sz));
out = m1;
M = m1;
for j1 = 1:numel(varargin)
M(mm{j1,:}) = varargin{j1};
out = out + M;
M = m1;
end
using
a = ones(3,4)
b = 2*ones(5,3)
out = addiffmatrix(a,b)
out =
3 3 3 1
3 3 3 1
3 3 3 1
2 2 2 0
2 2 2 0
ADD
variant with "general point"
function out = addiffmatrix(cp,varargin)
% cp - coordinates of the general point in every matrix
% varargin - matrices
n = cellfun('ndims',varargin);
N = max(n);
sz = cell2mat(cellfun(@(x)[size(x) ones(1,N - numel(size(x)))],...
varargin(:),'un',0));
C = max(cp);
ij1 = bsxfun(@minus,C,cp);
mm = arrayfun(@(i1,j1)(1:i1)+j1,sz,ij1,'un',0);
out = zeros(C+max(sz-cp));
for j1 = 1:numel(varargin)
out(mm{j1,:}) = out(mm{j1,:}) + varargin{j1};
end
using
>> a
a =
1 1 1 1
1 1 1 1
>> b
b =
1.5 1.5 1.5
1.5 1.5 1.5
1.5 1.5 1.5
>> c
c =
2 2
2 2
2 2
2 2
2 2
>> cp
cp =
1 1
1 3
5 2
>> out = addiffmatrix(cp,a,b,c)
out =
0 2 2 0 0 0
0 2 2 0 0 0
0 2 2 0 0 0
0 2 2 0 0 0
1.5 3.5 4.5 1 1 1
1.5 1.5 2.5 1 1 1
1.5 1.5 1.5 0 0 0
>>

カテゴリ

Help Center および File ExchangeTriangulation Representation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by