Solve PDE - elliptic equation

4 ビュー (過去 30 日間)
Francesco Mela
Francesco Mela 2016 年 11 月 13 日
コメント済み: Torsten 2016 年 11 月 15 日
Hi, I have to solve this PDE:
Uxx+Uxy+Uyy+sin(u)=12∗(x2+y2)+sin(x2+y2)Uxx+Uxy+Uyy+sin(u)=12∗(x2+y2)+sin(x2+y2)
The domain is
U(0,y)=y4;U(1,y)=1+y4;U(x,0)=x4;U(x,1)=1+x4;U(0,y)=y4;U(1,y)=1+y4;U(x,0)=x4;U(x,1)=1+x4;
First of all I think that I change the equations in canonical form, I do this with:
(eta=((3)(1/2)x/2),(ξ=y−(1/2)x):(eta=((3)(1/2)x/2),(ξ=y−(1/2)x):
This is quite easy. The problem is the domain: How can I transform in the new coordinates?
I need a domain that is rectangular: I want to solve the equation with Jacobi iterative method.
Thanks
  1 件のコメント
Torsten
Torsten 2016 年 11 月 15 日
If the domain is rectangular for the original equation, it's better to leave everything as it is. Schemes to discretize Uxy are standard.
Best wishes
Torsten.

サインインしてコメントする。

回答 (0 件)

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by