I need Help on this assignments.

1 回表示 (過去 30 日間)
Joshua Amuga
Joshua Amuga 2016 年 11 月 1 日
コメント済み: James Tursa 2016 年 11 月 1 日
Question 1. A light bulb rated 240 volts and 75 watts. If the voltage decrease by 5 volts and the resistance of the bulb is increased by 8Ω, by how much will the power change. Solution. DATA. Volt;V_1=240v Volt;V_2=240-5=235v Power;P=75watts Resistance;R_1=x?. Resistance;R_2=x+8Ω..............................................................1 Find Power Change?
Power=IV ; I^2 V..............................................................2 P_1=V_1 I ..............................................................3 V_1=IR_1..............................................................4 Initial Voltage is V_1=240v Current I=? Initial Resistance Resistance;R_1=x? V_2=235 Resistance;R_2=x+8Ω V_2=IR_2..............................................................5 I=V_2/R_2 ..............................................................6 Substitute the values of V_2 and R_2 to get the valie of "I" I=235/(x+8Ω)..............................................................7 Recall from equation 3 P_1=V_1 I Substitute the values of P_1 and V_1 to get the value of x in I 75=240× 235/(x+8Ω) (75(x+8Ω))/75=56400/75 (x+8Ω)=752 x=752-8 R_1=x=744Ω R_2=x+8Ω R_2=744+8 R_2=752Ω Lets calculate the current "I" I=V_1/R_1 I=240/744=0.3226A I=V_1/R_1 I=235/752 Recall P_1=V_1 I P_2=V_2 I P_2=235×0.3125 P_2=73.44watts Change in Power difference P_1-P_2 ∆ in Power=75-73.44 ∆P=1.5625watts.
Question 2 〖(d^2 y)/(dx^2 )+4 dy/dx+3y=0 subject to the initial condition y〗_((0))=3;〖y^'〗_((0))=4 where y^'=dy/dx Solution. We will attempt to first solve this differential equation by general method then we will also subject the equation to the given initial conditions let y=e^mx and y^'=me^mx and y^''=m^2 e^mx Where (d^2 y)/(dx^2 )=y^'' and dy/dx=y^' and y=y substitute the values in the above equation m^2 e^mx+4me^mx+3e^mx=0 e^mx (m^2+4m+3)=0 Find the roots of equation m(m+1)+3(m+1)=0 (m+1)(m+3)=0 Therefore m=-1 and m=-3 The general Solution is y=C_1 e^(-x)+C_2 e^(-3x) where C_1 and C_2 are arbitrary constant Now lets subject y^''+4y^'+3y=0 to the initial condition y_((0)) =3;〖y^'〗_((0))=4 we have the following y^2+4y^'+3y=0 where y_((0)) =3;〖y^'〗_((0))=4
y^2+4×4+3×3=0 y^2+16+9=0 y^2+25=0 y^2=-25 y=√(-25) y=-5 Question 3 In a biogas production experiment products increases with temperature as shown in the Table below. Determine the best fits between linear, quadratic and cubic for the observed data x 0 10 20 30 40 50 60 70 80 90 100 y 27.6 31.0 34.0 37 40 42.6 45.5 48.3 51.1 54.0 56.7
  2 件のコメント
Alexandra Harkai
Alexandra Harkai 2016 年 11 月 1 日
Can you share the code you have problems with?

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Regression についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by