Test based on inequality of two vectors does not succeed.

1 回表示 (過去 30 日間)
Oddur Bjarnason
Oddur Bjarnason 2016 年 10 月 30 日
コメント済み: Oddur Bjarnason 2016 年 10 月 31 日
([1,0],[0.8,0.2;0.6,0.4])
function stationarystates( S0,T )
%This function is a simple model of a Markov chain
% S0 is the initial state
% T is the transition matrix
% I want the cumulation of states to stop after state i if state i =
% state i+1. This does not happen with this code
M=S0
for i=1:1:10
if S0*T^i~=S0*T^(i-1) %Test for inequality of successive states
M((i+1),:)=S0*T^i; %M cumulates the states
else break
end
end
disp(M)
plot(M)
end
  1 件のコメント
Massimo Zanetti
Massimo Zanetti 2016 年 10 月 31 日
Adding some explanation to summarize your problem?

サインインしてコメントする。

採用された回答

Image Analyst
Image Analyst 2016 年 10 月 31 日
編集済み: Image Analyst 2016 年 10 月 31 日
And of course S0*T^i will never equal S0*T^(i-1) - the exponent is different! What you need to do is use i and (i-1) as indexes into the S0 array. It looks like S0 better be an array or you won't get it to work.
  5 件のコメント
Steven Lord
Steven Lord 2016 年 10 月 31 日
>> m1 = [1,0]*[0.8,0.2;0.6,0.4]^6
m1 =
0.7500 0.2500
>> m2 = [1,0]*[0.8,0.2;0.6,0.4]^7
m2 =
0.7500 0.2500
>> m1-m2
ans =
1.0e-04 *
0.1280 -0.1280
Just because m1 and m2 look the same using the default display format doesn't mean they contain the same values. You can see this more clearly using a different display format.
>> format longg
>> [m1; m2; m1-m2]
ans =
0.750016 0.249984
0.7500032 0.2499968
1.2800000000035e-05 -1.27999999999795e-05
Oddur Bjarnason
Oddur Bjarnason 2016 年 10 月 31 日
Thank you Steven, I have come to realize this. See my answer below which follows Image Analyst's answer and comments.

サインインしてコメントする。

その他の回答 (1 件)

Oddur Bjarnason
Oddur Bjarnason 2016 年 10 月 31 日
function stationarystates(S0,T) %This function is a simple model of a Markov chain % S0 is the initial state % T is the transition matrix % I want the cumulation of states to stop after state i if the difference % between states is small enough.
M=S0
for i=1:1:10
m1 = S0*T^i;
m2 = S0*T^(i-1);
mDiff = abs(m2-m1);
if max(mDiff(:)) > 0.00001; % The states are essentially equal.
M((i+1),:)=S0*T^i; % M cumulates the states
else break
end
end
disp(M)
plot(M)
end
  1 件のコメント
Oddur Bjarnason
Oddur Bjarnason 2016 年 10 月 31 日
Thank you Image Analyst. This code is accordance with your answer and comments and yields the results I needed. I realize that the rows of the matrix approach the stationary matrix asymptotically but never becomes equal to the stationary state. So I have to be satisfied with a difference between states that is small enough. Thank you again. Oddur.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMarkov Chain Models についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by