Is there a way to plot a confusion matrix of the cross validation results?

5 ビュー (過去 30 日間)
Hadeer tawfik
Hadeer tawfik 2016 年 10 月 30 日
編集済み: ROHAN JAIN 2020 年 6 月 30 日
Can somebody tell me how to plot a confusion matrix of the crossval result?
CVMdl = crossval(classifier,'HoldOut',0.08);
k=kfoldLoss(CVMdl,'lossFun','classiferror','mode','average')
L = resubLoss(classifier,'LossFun','classiferror')
Accuracy = 1 - k
  2 件のコメント
ben dp
ben dp 2017 年 5 月 10 日
Hey Hadeer!
Did you find a solution? I'm in the same problem.
ROHAN JAIN
ROHAN JAIN 2020 年 6 月 30 日
編集済み: ROHAN JAIN 2020 年 6 月 30 日
Hi,
You can plot the confusion matrix easily by using the following function:
confusionchart(testlabels,labels_predicted)
where testlabels are the labels of the test set and labels_predicted refers to the labels that have been predicted by the LDA classifier using predict().
It automatically plots the confusion matrix. Further, you can also store it in a variable and access the values using the dot operator as mentioned below.
cvmat=confusionchart(testlabels,labels_predicted)
cval=cmat.NormalizedValues; % cval is the required matrix
Hope it helps!
Thanks

サインインしてコメントする。

回答 (2 件)

Santhana Raj
Santhana Raj 2017 年 5 月 11 日
I am not aware of any method to plot confusion matrix. But usually I calculate the precision and recall from the true positives and true negatives. Some places I also use F-measure. Depending on your application, any of this might be a good measure to evaluate your classification algorithm.
Check wiki for the formulas for these.

Karina Nanuck-Robertson
Karina Nanuck-Robertson 2019 年 4 月 16 日
Not sure if this helps

カテゴリ

Help Center および File ExchangeClassification についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by