plotting a simple constant

365 ビュー (過去 30 日間)
Robert
Robert 2016 年 9 月 17 日
回答済み: Sam Chak 2024 年 3 月 2 日
Matlab strikes again with stupidity
Been using matlab for years and still fighting ridiculous problems
x = [1:.5:10]
y = x.*4;
Z = 4
plot(x,y,'blue'); hold on
plot (x,Z,'red')
Why won't this give me a simple plot with both functions on it. Totally insane. It gives me the x*4 plot but will not give me the constant 4

採用された回答

Anatoly Kozlov
Anatoly Kozlov 2020 年 4 月 6 日
編集済み: Anatoly Kozlov 2020 年 4 月 6 日
x = 0:0.001:1;
c=5;
const = @(x)(c).*x.^(0);
plot(x, const(x))
  1 件のコメント
Anatoly Kozlov
Anatoly Kozlov 2020 年 4 月 6 日
編集済み: Anatoly Kozlov 2020 年 4 月 6 日
Note: const = @(x)(c); doesn't work

サインインしてコメントする。

その他の回答 (3 件)

Image Analyst
Image Analyst 2016 年 9 月 17 日
Sometime in your years of using MATLAB you probably ran across ones() function but forgot about it. You need to use it so that, for each value of x, you have a value for Z. Here is the correct way to do it.
x = [1 : 0.5 : 10]
y = x .* 4
% Now declare a constant array Z
% with one element for each element of x.
Z = 4 * ones(1, length(x));
plot(x, y, 'b', 'LineWidth', 2);
hold on
plot(x, Z, 'r', 'LineWidth', 2)
grid on;
Otherwise, your Z had only 1 element, not 1 for every value of x so it won't plot a point at every value of x.
  5 件のコメント
Robert
Robert 2016 年 9 月 17 日
After further research I have decided for myself the best way to do it is to plot the unit step function with whatever gain you need.
Paul
Paul 2024 年 3 月 2 日
Since R2018b, yline is probably the way to go
x = [1:.5:10];
y = x.*4;
Z = 4;
plot(x,y,'blue'); hold on
%plot (x,Z,'red')
yline(Z,'red')

サインインしてコメントする。


sunny
sunny 2024 年 3 月 2 日
x =1:.5:10;
y = x.*4;
Z = 4;
m=5:.5:14;
n=m-x;
plot(x,y,'blue');
hold on
plot (x,n,'red');
hold off;

Sam Chak
Sam Chak 2024 年 3 月 2 日
Before I discovered other special non-math functions like ones() and yline(), I used to rely on certain math tricks, such as the sign function, to plot a constant y-value over a specified x range. The concept was to treat plotting as if it were any other vector in a finite-dimensional Euclidean space. However, this trick had a fatal flaw when attempting to plot the constant y-value over , as . Therefore, it was necessary to adjust or shift the 'goalpost' to overcome this limitation.
Example 1: Using the sign function
x = 1:0.5:10;
y1 = 4*x;
y2 = 4*sign(x.^2);
figure(1)
plot(x, y1, 'linewidth', 2), hold on
plot(x, y2, 'linewidth', 2), grid on
xlim([x(1), x(end)])
xlabel x, ylabel y
title('Example 1: Using the sign function')
legend('y_{1}', 'y_{2}', 'fontsize', 16, 'location', 'best')
Example 2: Fatal flaw when crossing
x = -2:0.5:2;
y1 = 4*x;
y2 = 4*sign((x - 0).^2);
figure(2)
plot(x, y1, 'linewidth', 2), hold on
plot(x, y2, 'linewidth', 2), grid on
xlim([x(1), x(end)])
xlabel x, ylabel y
title('Example 2: Fatal flaw when crossing x = 0')
legend('y_{1}', 'y_{2}', 'fontsize', 16, 'location', 'best')
Example 3: Shifting the goalpost
x = -2:0.5:2;
y1 = 4*x;
y2 = 4*sign((x - 2*x(1)).^2);
figure(3)
plot(x, y1, 'linewidth', 2), hold on
plot(x, y2, 'linewidth', 2), grid on
xlim([x(1), x(end)])
xlabel x, ylabel y
title('Example 3: Shifting the goalpost')
legend('y_{1}', 'y_{2}', 'fontsize', 16, 'location', 'best')

カテゴリ

Help Center および File ExchangeDiscrete Data Plots についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by