Matlab limitation in fsolve using function input

2 ビュー (過去 30 日間)
Meva
Meva 2016 年 8 月 22 日
コメント済み: Meva 2016 年 8 月 31 日
Hello,
I tried to loop for time value (T) inside my fsolve, but fsolve is pretty unforgiving.
The time loop does not seem working.
When I plot, it gives the same values (h=x(1) and theta=x(2) does not change over time which should change)!
Please see the the script that uses for loop for time (T). T is input for fsolve. :
x0 = [.1, .1];
options = optimoptions('fsolve','Display','iter');
dt=0.01;
Nt=1/dt+1;
Tarray = [0:dt:1];
T = 0;
for nt=1:Nt
[x,fval] = fsolve(@torder1,x0,options,T)
T=T+dt;
h(nt)=x(1);
theta(nt) = x(2);
plot(Tarray,h,'*')
hold on
plot(Tarray,theta,'+')
end
and the function for fsolve:
function F=torder1(x,T)
x_1=[0:0.01:1];
b=0.6;
%$ sol(1) = h; sol(2) =theta;
clear x_1;
syms x_1 h theta kappa
f_1(x_1,h,theta,kappa) = 1/2*(1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-kappa*x_1*(1-x_1))^2 ));
f_2(x_1,h,theta,kappa) = (x_1-b)/2*( 1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-kappa*x_1*(1-x_1))^2 ));
kappa =1;
f_11 = 1-( (h+(x_1-b)*theta)^2/(h+(x_1-b)*theta-1*x_1*(1-x_1))^2 );
f_21 = (x_1-b)/2*( 1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-x_1*(1-x_1))^2 ));
fint_1 = int(f_11, x_1);
fint_2 = int(f_21, x_1);
x_1=1;
upper_1=subs(fint_1);
upper_2=subs(fint_2);
clear x_1;
x_1=0;
lower_1=subs(fint_1);
lower_2=subs(fint_2);
clear x_1;
integral_result_1old=upper_1-lower_1;
integral_result_2old=upper_2-lower_2;
h0 = kappa *b*(1-b);
theta0 = kappa*(1-2*b);
integral_result_1 = subs(integral_result_1old, {h, theta}, {x(1), x(2)});
integral_result_2 = subs(integral_result_2old, {h, theta}, {x(1), x(2)});
F = [double(x(1) - integral_result_1*T^2 -h0);
double(x(2) - integral_result_2*T^2 - theta0)];

採用された回答

Walter Roberson
Walter Roberson 2016 年 8 月 22 日
編集済み: Walter Roberson 2016 年 8 月 22 日
fsolve() is for real values, but solutions to your equations are strictly complex, except at T = 0.
You might be getting false results from fsolve(), with it either giving up or finding something that appears to come out within constraints.
For example, if you
fsolve(@(x) x^2+1, rand)
then you will get a small negative real-valued answer that MATLAB finds to be within the tolerances, when the right answer should be something close to sqrt(-1)
  11 件のコメント
Walter Roberson
Walter Roberson 2016 年 8 月 27 日
I sleep. I have drive failures. I have network failures. I have appointments.
Meva
Meva 2016 年 8 月 31 日
A sincere apologise Walter. Sorry.

サインインしてコメントする。

その他の回答 (1 件)

Alan Weiss
Alan Weiss 2016 年 8 月 22 日
I think that you need to replace your line
[x,fval] = fsolve(@torder1,x0,options,T)
with
[x,fval] = fsolve(@(x)torder1(x,T),x0,options)
Alan Weiss
MATLAB mathematical toolbox documentation
  3 件のコメント
John D'Errico
John D'Errico 2016 年 8 月 22 日
編集済み: John D'Errico 2016 年 8 月 22 日
But that is not what Alan suggested. There is a difference between these lines:
[x,fval] = fsolve(@torder1(x,T),x0,options)
[x,fval] = fsolve(@(x)torder1(x,T),x0,options)
Alan suggested the second, but you then tried the first.
Meva
Meva 2016 年 8 月 22 日
You are right. However, it does give me again incorrect plot as attached. It does not understand my loop!

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by