adding two different distributions example:Gaussian and Poisson distribution

5 ビュー (過去 30 日間)
Anusha S S
Anusha S S 2016 年 6 月 6 日
コメント済み: Torsten 2016 年 6 月 8 日
if we add two different distributions namely gaussian which as mean and standard deviation as variables and Poisson distribution with lambda variable how to mathematically relate the resultant distribution(What distribution the resulting value will take) and how to code it
  1 件のコメント
Image Analyst
Image Analyst 2016 年 6 月 8 日
What does "relate" mean to you? The new distribution will be the sum of the two you summed. What else do you need to know?

サインインしてコメントする。

回答 (1 件)

Torsten
Torsten 2016 年 6 月 6 日
編集済み: Torsten 2016 年 6 月 6 日
If X ~ Poisson(lambda), Y ~ N(mu,sigma^2), X, Y independent and Z=X+Y, then the cdf of Z is given by
P(Z<=z) = sum_{k=0}^{k=oo} P(X=k) * P(Y<=z-k).
P(X=k) = lambda^k/k! * exp(-lambda)
P(Y<=z-k) = 0.5*(1+erf((z-k-mu)/sqrt(2*sigma^2))) (erf: error function)
If needed, you can get the pdf of Z by differentiating the sum with respect to z.
Best wishes
Torsten.
  3 件のコメント
Torsten
Torsten 2016 年 6 月 8 日
So to get the cfd F_Z of Z=X+Y, you have to evaluate the infinite sum
F_Z(z)= sum_{k=0}^{k=Inf} lambda^k/k!*exp(-lambda)*0.5*(1+erf((z-k-mu)/sqrt(2*sigma^2)))
for different values of z.
Make an attempt. If it does not work, post the code with the error message you get.
Best wishes
Torsten.

サインインしてコメントする。

タグ

タグが未入力です。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by