I am trying to solve this numerical integration by simpsons method and plot figure. But it returns NAN value.I could not understand why it returns NAN value

1 回表示 (過去 30 日間)
alpha = 45;
beta = 185;
gamma_e = 116;
G_ei = -4.11;
G_ee = 2.07;
G_sr = -3.30;
G_rs = 0.20;
G_es = 0.77;
G_re = 0.66;
G_se = 7.77;
G_sn = 8.10;
G_esre = G_es*G_sr*G_re;
G_srs = G_sr*G_rs;
G_ese = G_es*G_se;
G_esn = G_es*G_sn;
t_0 = 0.085;
r_e = 0.086;
a = -60;
b = 60;
n = 300;
f = -40:40
w = 2*pi*f; % angular frequency in radian per second
for k = 1:length(w)
L_initial = @(w1) (1-((1i*w1)/alpha))^(-1)* (1-((1i*w1)/beta))^(-1);
L_shift = @(w1) (1-((1i*(w(k)-w1))/alpha))^(-1)* (1-((1i*(w(k)-w1))/beta))^(-1);
L = @(w1) L_initial(w1)*L_shift(w1); low pass filter for w1*(w-w1)
Q_initial = @(w1) (1/(r_e^2))*((1-((1i*w1)/gamma_e))^(2) - (1/(1-G_ei*L_initial(w1)))* (L_initial(w1)*G_ee + (exp(1i*w1*t_0)*(L_initial(w1)^2*G_ese +L_initial(w1).^3*G_esre))/(1-L_initial(w1)^2*G_srs)));
Q_shift = @(w1) (1/(r_e^2))*((1-((1i*(w(k)-w1))/gamma_e))^(2) - (1/(1-G_ei*L_shift(w1)))* (L_shift(w1)*G_ee + (exp(1i*(w(k)-w1)*t_0)*(L_shift(w1)^2*G_ese +L_shift(w1)^3*G_esre))/(1-L_shift(w1)^2*G_srs)));
Q = @(w1) Q_initial(w1)*Q_shift(w1);
p_initial = @(w1) (pi/r_e^4)* (abs((L_initial(w1)^2*G_esn)/((1-L_initial(w1)^2*G_srs)*(1-G_ei*L_initial(w1))))).^2 * abs((atan2((imag(Q_initial(w1))),(real(Q_initial(w1)))))/imag(Q_initial(w1)));
p_shift = @(w1) (pi/r_e^4)* (abs((L_shift(w1)^2*G_esn)/((1-L_shift(w1)^2*G_srs)*(1-G_ei*L_shift(w1))))).^2 * abs((atan2((imag(Q_shift(w1))),(real(Q_shift(w1)))))/imag(Q_shift(w1)));
p = @(w1) p_initial(w1)*p_shift(w1);
I(k) = simprl(p,a,b,n) (simprl is a calling function)
end
plot(f,I)
xlabel('f (frequency in Hz)')
ylabel('I (numerical integral values)')
%%%%%%%%%
function [s] = simprl(p,a,b,n)
h = (b-a)./n;
s1 = 0;
s2=0;
% loop for odd values in the range
for k = 1:n/2;
x = a + h*(2*k-1);
s1 = s1+feval(p,x);
end
% loop for even values in the range
for k = 1:(n/2 - 1);
x = a + h*2*k;
s2 = s2+feval(p,x);
end
s = h*(feval(p,a)+feval(p,b)+4*s1+2*s2)/3;

採用された回答

Walter Roberson
Walter Roberson 2016 年 5 月 19 日
Your code was missing a couple of % and so would not run.
In your line
p_initial = @(w1) (pi/r_e^4)* (abs((L_initial(w1)^2*G_esn)/((1-L_initial(w1)^2*G_srs)*(1-G_ei*L_initial(w1))))).^2 * abs((atan2((imag(Q_initial(w1))),(real(Q_initial(w1)))))/imag(Q_initial(w1)));
when w1 is 0, imag(Q_initial(w1)) is 0 because Q_initial(0) is real, so you have a division by 0.
  3 件のコメント
Walter Roberson
Walter Roberson 2016 年 5 月 20 日
You have
f = -40:40
w = 2*pi*f;
so f passes exactly through 0, and at the point it is exactly 0, w will be exactly 0, which leads to that problem about division by 0.
So if you add a tiny amount to f so that it is never exactly 0, then I think it might do the trick.
Example:
f = (-40:40) + 1/10000;
Namira
Namira 2016 年 5 月 22 日
編集済み: Namira 2016 年 5 月 22 日
Thanks. @ Walter Roberson

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by