Global optimization with non linearly linked parameters
2 ビュー (過去 30 日間)
古いコメントを表示
I need help on how to do this kind of optimization; I have experimental data to fit to a model in the form of M = (2*A*x-B)/(C*x-exp(A^2+B^2)); C = f(ci), my problem is how to express A and B in the optimization problem since they are done with : A^2-B^2 = f(ai,bi) and 2*A*B = f(ai,bi), [C, A, B are arrays, ci,ai,bi are scalars and of course M is an array];
0 件のコメント
採用された回答
Alan Weiss
2016 年 4 月 26 日
I do not understand which are your control variables (ones that you want the solver to change in order to reach a minimum) and which, if any, are extra constant parameters or data.
You need to have all of your control variables in one vector variable that is usually called x. For example, if your control variables are A and B (matrices), then set
x = [A(:);B(:)];
This means make a vector out of the columns of A, and append to it a vector made out of the columns of B.
After you know exactly which are your control variables, you should be able to write your objective function and, if necessary, nonlinear constraint functions.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Genetic Algorithm についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!