using 2D data as input for a neural network
1 回表示 (過去 30 日間)
古いコメントを表示
have data that i'd like to use as input for a pattern recognition neural net project
the data comes as a series of tables, each of which needs to be input all at once, rather than one row or one col at a time
so, I figure it needs to be "spooled" out to one long array, and the net will need at least that many input neurons
so, two questions:
1) does it matter how it gets spooled out? say, column by column, row by row, or either as long as I'm consistent?
2) the tables are different sizes, should I just pad the smaller ones out with zeros? nulls?
thanks
0 件のコメント
採用された回答
Greg Heath
2016 年 4 月 24 日
0. An input layer node is not a neuron. Only hidden and output layer nodes are neurons.
1. Use the colon operator matrix(:) to convert matrices to a single column.
2. No need to pad with zeros or nulls. Just stack the converted matrices ([a(:);b(:);...;z(:)]
Hope this helps.
Thank you for formally accepting my answer
Greg
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!