How it is possible to find the eigenvalues of a 2*2 matrice without using of eigen function?

6 ビュー (過去 30 日間)
Hi every one,
I tried to fine eigenvalues of 2*2 A matrix with det(A-landa*I) and my script is follow as:
clc
clear all
syms landa
a=input('please enter value of a:');
b=input('please enter value of b:');
c=input('please enter value of c:');
d=input('please enter value of d:');
A=[a b; c d]; I=[1 0;0 1]; B=landa*I;
D=det(A-B)
firstly, I defined landa as syms and after finding determinant, with a=1, b=2, c=3 and d=4, the result is 'landa^2 - 5*landa - 2' . (it is a 2 degree polynomial that saved in D)
so my problem is: How I could got the coefficients of this polynomial for finding the landa1 and landa2 as eigenvalues of A matrix?

採用された回答

Torsten
Torsten 2016 年 4 月 15 日
eigenvalues=solve(D==0,landa);
Best wishes
Torsten.
  3 件のコメント
Torsten
Torsten 2016 年 4 月 15 日
landa(1)=0.5*(a+d)+sqrt((0.5*(a+d))^2-(a*d-b*c));
landa(2)=0.5*(a+d)-sqrt((0.5*(a+d))^2-(a*d-b*c));
Best wishes
Torsten.
Habib
Habib 2016 年 4 月 15 日
Dear Torsten,
your answers was very very useful, thanks.
best regards
habib

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by