Training feedforward neural network
3 ビュー (過去 30 日間)
古いコメントを表示
I have two gaussian distribution samples, one guassian contains 10,000 samples and the other gaussian also contains 10,000 samples, I would like to train a feed-forward neural network with these samples but I dont know how many samples I have to take in order to get an optimal decision boundary. Here is the code but I dont know exactly the solution and the output are weirds.
x1 = -49:1:50;
x2 = -49:1:50;
[X1, X2] = meshgrid(x1, x2);
Gaussian1 = mvnpdf([X1(:) X2(:)], mean1, var1);// for class A
Gaussian2 = mvnpdf([X1(:) X2(:)], mean2, var2);// for Class B
net = feedforwardnet(10);
G1 = reshape(Gaussian1, 10000,1);
G2 = reshape(Gaussian2, 10000,1);
input = [G1, G2];
output = [0, 1];
net = train(net, input, output);
When I ran the code it give me weird results. If the code is not correct, can someone please suggest me so that I can get a decision boundary for these two distributions.
0 件のコメント
回答 (1 件)
Greg Heath
2016 年 4 月 19 日
For N I-dimensional input vectors from c classes, the corresponding N target vectors are {0,1} c-dimensional unit vectors:
[ I N ] = size(input)
[ c N ] = size(target)
where
target = ind2vec(trueclassindices)
and
trueclassindices = vec2ind(target)
Hope this helps.
Thank you for formally accepting my answer
Greg
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!