Adding trajectories to vector fields of a linear system

9 ビュー (過去 30 日間)
Jai Tushar
Jai Tushar 2016 年 4 月 4 日
編集済み: Jai Tushar 2016 年 4 月 5 日
I used the quiver function to plot the vector fields of a simple uncoupled linear system,
[x1, x2] = meshgrid(-.5:0.05:0.5, -.5:.05:.5);
x1dot = - x1;
x2dot = 2*x2;
quiver(x1,x2,x1dot,x2dot)
Got this figure
Tried to add streamline function to obtain trajectories to no effect,
[x1, x2] = meshgrid(-.5:0.05:0.5, -.5:.05:.5);
x1dot = - x1;
x2dot = 2*x2;
quiver(x1,x2,x1dot,x2dot)
hold on
startx = -0.4:0.05:0.5;
starty = ones(size(startx));
streamline(x1,x2,x1dot,x2dot,startx,starty)
Any suggestions would be helpful!

採用された回答

Kuifeng
Kuifeng 2016 年 4 月 4 日
[x1, x2] = meshgrid(-.5:0.05:0.5, -.5:.05:.5);
x1dot = - x1;
x2dot = 2*x2;
quiver(x1,x2,x1dot,x2dot)
hold on
starty = -0.5:0.05:0.5;
startx = ones(size(starty))*-0.5; %specify the starting x values- LHS
streamline(x1,x2,x1dot,x2dot, startx,starty)
startx_2 = ones(size(starty))*0.5; %specify the starting x values -RHS
streamline(x1,x2,x1dot,x2dot, startx_2,starty);

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeVector Fields についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by