how to implement neural network for eeg motor imagery classification?
3 ビュー (過去 30 日間)
古いコメントを表示
I extracted a 140x16 feature table with each line representing the feature vector of one experiment.Also i have the class labels of the 140 experiments.My intention is to use a neural network to classify my experiments by using half or a percentage of them for training the network and the rest for classification.Can anyone guide me?
0 件のコメント
採用された回答
Greg Heath
2016 年 4 月 3 日
If you have c classes, the target columns should be columns of the c-dimension unit matrix eye(c).
[ I N ] = size(input) % [ 16 140 ]
[ c N ] = size(target) % [c 140 ]
For classification tutorials and examples search BOTH the NEWSREADER and ANSWERS with
greg patternnet
For documentation and associated unsatisfactory examples:
help patternnet
doc patternnet
Hope this helps.
Thank you for formally accepting my answer
Greg
0 件のコメント
その他の回答 (0 件)
コミュニティ
その他の回答 パワー エレクトロニクス コミュニティ
参考
カテゴリ
Help Center および File Exchange で EEG/MEG/ECoG についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!