GA-Neural Network Hybridization

1 回表示 (過去 30 日間)
Abul Fujail
Abul Fujail 2012 年 2 月 1 日
コメント済み: Greg Heath 2017 年 1 月 30 日
How GA can be hybridized with Neural network (with reference to Matlab).
  3 件のコメント
Abul Fujail
Abul Fujail 2012 年 4 月 4 日
in='input_train.tra';
p=load(in);
p=transpose(p);
net=newff([.1 .9;.1 .9;.1 .9;.1 .9],[7,1], {'logsig','logsig'},'trainlm');
net=init(net);
tr='target_train.tra';
x=load(tr);
x=transpose(x);
net.trainParam.epochs=600;
net.trainParam.show=10;
net.trainParam.lr=0.3;
net.trainParam.mc=0.6;
net.trainParam.goal=0;
[net,tr]=train(net,p,x);
y=sim(net,p);
Some codes are shown above... i have 4 input vector and 1 target vector... i want to get the optimum weight with GA so that the mean square error between target and neural network predicted result is minimum. Please suggest me how the GA can be added with this neural network code..
thomas lass
thomas lass 2016 年 12 月 24 日
I need the full codes of GA can be hybridized with Neural network

サインインしてコメントする。

採用された回答

Greg Heath
Greg Heath 2012 年 2 月 3 日
I don't see how they can be combined to an advantage.
Just write the I/O relationship for the net in terms of input, weights and output: y = f(W,x). Then use the Global Optimization toolox to minimize the mean square error MSE = mean(e(:).^2) where e is the training error, e = (t-y) and t is the training goal.
Hope this helps.
Greg
  3 件のコメント
Shipra Kumar
Shipra Kumar 2017 年 1 月 30 日
編集済み: Shipra Kumar 2017 年 1 月 30 日
greg how can u write y as a function. i am having similar difficulty while implementing ga-nn. would be glad if u could help
Greg Heath
Greg Heath 2017 年 1 月 30 日
y = B2+ LW*tansig( B1 + IW *x);

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDeep Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by