6 Simultaneous equations with 6 Unknowns

3 ビュー (過去 30 日間)
Anie Ekpes
Anie Ekpes 2012 年 1 月 18 日
編集済み: Torsten 2018 年 4 月 12 日
Please can someone help me with a MATLAB program that can solve 6 simultaneous euations with 6 unknowns using either crammer's rule or gauss elimination method. Thanks

採用された回答

the cyclist
the cyclist 2012 年 1 月 18 日
編集済み: John Kelly 2015 年 2 月 26 日
I think you probably want to use the mldivide operator.
  2 件のコメント
MJTHDSN
MJTHDSN 2018 年 4 月 12 日
Dear Matlabers,
I have a similar question. Let`s assume the equations as below:
SN = rnd(5,1); a = SN(1); b = SN(2); c = SN(3); d = SN(4); e = SN(5); f = SN(6);
eq1 = a*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(4)*x(5))+(x(5)^2)) == 0;
eq2 = b*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)+(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq3 = c*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)+(2*x(4)*x(5))+(x(5)^2)) == 0;
eq4 = d*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+ (x(4)^2)-(2*x(1)*x(4)*x(5))-(x(4)*x(5))+(x(5)^2)) == 0;
eq5 = e*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq6 = f*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)-(2*x(4)*x(5))+(x(5)^2)) == 0;
here, a,b,c,d,e,f are numbers (0.43 for example). For now I consider them as SN(i):
I want to find x(1),...,x(5) values.
I have tried many ways but no solution was found.
Would you mind to help me with my problem?
Best,
Torsten
Torsten 2018 年 4 月 12 日
編集済み: Torsten 2018 年 4 月 12 日
6 equations for 5 unknowns usually gives no solution since the system is overdetermined.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by