Normalization of JacobiP function

4 ビュー (過去 30 日間)
Luis Isaac
Luis Isaac 2016 年 1 月 12 日
編集済み: Torsten 2016 年 1 月 12 日
Dear;
I am new in MuPAD I would like to know if the matlab function JacobiP (which computes the Jacobi polynomial) is normalized to 1. To prove this I computed the following code:
syms x
a = 3.5;
b = 7.2;
P3 = jacobiP(3, a, b, x);
w = (1-x)^a*(1+x)^b;
int(P3*P3*w, x, -1, 1)
The answer is the symbolic expresion of the integral:
int((1 - x)^(7/2)*(x + 1)^(36/5)*(- (1284731*x^3)/16000 + (853923*x^2)/16000 + (44247*x)/16000 - 42439/16000)^2, x, -1, 1)
If the Jacobi polynomials are orthonormalized, the result should be 1 How can I evaluate this integral numerically? I tried (<http://es.mathworks.com/help/symbolic/mupad_ref/numeric-int.html>)
numeric::int(P3^2*w,x,-1,1)
or
numeric::int(P3^2*w,x,-1..1)
but Matlab return an error.
Many thanks in advance;
  2 件のコメント
Luis Isaac
Luis Isaac 2016 年 1 月 12 日
Thank you very much;
As can be seen the Matlab definition of JacoviP are not normalized.
So what is the normalization of the JacobiP, or how can I get orthonormalized Jacobi polynomilas whitout need to calculate the integral.
Thanks again;
Torsten
Torsten 2016 年 1 月 12 日
編集済み: Torsten 2016 年 1 月 12 日
n=3;
a=3.5;
b=7.2;
normfactor=1/(2^(a+b+1)/(2*n+a+b+1)*gamma(n+a+1)*gamma(n+b+1)/(gamma(n+a+b+1)*gamma(n+1)));
fun=@(x) normfactor*jacobiP(n, a, b, x).^2.*(1-x).^a.*(1+x).^b;
value=integral(fun,-1,1);
Best wishes
Torsten.

サインインしてコメントする。

採用された回答

Torsten
Torsten 2016 年 1 月 12 日
a = 3.5;
b = 7.2;
fun=@(x) jacobiP(3, a, b, x).^2.*(1-x).^a.*(1+x).^b;
value=integral(fun,-1,1);
Best wishes
Torsten.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMuPAD についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by