Double Integral with Varying Limits

3 ビュー (過去 30 日間)
Osweh Razmara
Osweh Razmara 2016 年 1 月 3 日
syms x y
t=(30:1:90);
nu=0.3;
ms=1+nu;
E=2.07*10^11;
G=8.28*10^10;
R=0.0185;
Ep=E/(1-nu^2);
k=(6*(1+nu))/(7+6*nu);
A=pi*R^2;
L=0.254;
sigma=1;
I=(1/4)*pi*R^4;
mu=R*x;
mup=2*R*(1-sigma+x);
beta=R*y;
for i=1:length(t)
F1=(sqrt(((2*mup)/(pi*mu))*tan((pi*mu)/(2*mup))))*((0.752+2.02*(mu/mup)+0.37*(1-sin((pi*mu)/(2*mup)))^3)/(cos((pi*mu)/(2*mup))));
Flll=sqrt(((2*mup)/(pi*mu))*tan((pi*mu)/(2*mup)));
x_s=(((0.5*L)/R)+y*cosd(t(i)));
f11=matlabFunction(32*(x_s.^2)*(y^2)*x*(((sind(t(i))).^6)*F1^2+ms*((sind(t(i))).^4).*((cosd(t(i))).^2)*Flll^2)+...
16*x_s*k*y*x*((sind(t(i)).^3).*sind(2*t(i))*F1^2+ms*(sind(t(i)).^2).*cosd(t(i)).*cosd(2*t(i))*Flll^2)+...
2*k^2*x*(F1^2*(sind(2*t(i)).^2)+ms*(cosd(2*t(i))).^2*Flll^2));
xmin=0;
xmax=(sqrt(1-y^2*(sind(t(i))).^2))-1+sigma;
ymax=(sqrt(1-(1-sigma)^2))/(sind(t(i)));
ymin=-ymax;
Q(i)=(L)/(k*G*A)+(L^3)/(3*E*I)+1/(Ep*pi*R)*int(int(f11,x,xmin,xmax),y,ymin,ymax); % double integral
end
plot(t,Q,'g','LineWidth',3);grid on;
title('Flexibility Coefficient');
xlabel('theta');
ylabel('f11');
The above code that I write it, but when I run for sigma=0.5 don't response.
How to plot the solution for sigma=0:0.01:1 and t=20:1:180 ?
best regards

回答 (0 件)

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by