Solve ODE using backward euler's method

21 ビュー (過去 30 日間)
KC
KC 2015 年 12 月 12 日
コメント済み: KC 2015 年 12 月 14 日
x' = λ - ρx - βxz;
y' = βxz - δy;
z' = py - cz;
x0=43100; y0 = 0, z0 = 0.0033, λ = 388, ρ = 0.009 δ = 0.18, p = 50000, c = 23, β=3.61e-8
Is there a built-in function in matlab to solve the above non-linear system using the backward euler's method?

採用された回答

Torsten
Torsten 2015 年 12 月 14 日
Initialize
x_old = 43100, y_old = 0 and z_old = 0.0033
Compute x_new by solving the nonlinear system of equations
(x_new-x_old)/dt = lambda - rho*x_new - beta*x_new*z_new
(y_new-y_old)/dt = beta*x_new*z_new - delta*y_new
(z_new-z_old)/dt = p*y_new - c*z_new
by fixed-point iteration or with MATLAB's fsolve, e.g.
This gives you the solution for your system at time t=dt.
Set
x_old = x_new, y_old = y_new and z_old = z_new
and solve the above system again for x_new, y_new and z_new.
This gives you the solution at time t=2*dt.
Continue until you reach t=tfinal.
Best wishes
Torsten.
  3 件のコメント
Torsten
Torsten 2015 年 12 月 14 日
As far as I know, Forward Euler evaluates the right-hand side with the old values:
(x_new-x_old)/dt = lambda - rho*x_old - beta*x_old*z_old
(y_new-y_old)/dt = beta*x_old*z_old - delta*y_old
(z_new-z_old)/dt = p*y_old - c*z_old
Best wishes
Torsten.
KC
KC 2015 年 12 月 14 日
Thank you Mr. Torsten, I will try this code!

サインインしてコメントする。

その他の回答 (1 件)

Walter Roberson
Walter Roberson 2015 年 12 月 12 日
No, there is no built-in function in MATLAB for that.
  2 件のコメント
Walter Roberson
Walter Roberson 2015 年 12 月 13 日
KC
KC 2015 年 12 月 13 日
Is there an example somewhere of how to solve a system of ODE's using the backward euler's method? I would want to understand the concept first, so I can implement it in MATLAB. I googled for quite some time but was not able to find a proper example. Thanks!

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by