Determining the Time series prediction
1 回表示 (過去 30 日間)
古いコメントを表示
Hi all, according to simpleseries_dataset code in neural network there is a difference between it and NAREXNET. Is it in the coding or in the implementation of the function itself?
6 件のコメント
採用された回答
Greg Heath
2015 年 12 月 13 日
GOOD QUESTION!
My answer is TRIAL and ERROR
The advice I usually give for starting the process is
1) Use divideblock datadivision.
2) First use the default 0.7/0.15/0.15
3) Use the training data to estimate the
a. significant target autocorrelation lags
b. significant input-target crosscorrelation lags
4) Use 2, 3 and corresponding plots for lags 0 to
Ntrn/2 to guide a choice for ID and FD.
5) Determine the minimum number of hidden nodes for a
specified (degree-of-freedom adjusted) training error rate
e.g., NMSEtrna < 0.005 )
6) If successful try decreasing Ntrn
7) Using the smallest acceptable Ntrn for the openloop configuration, close the loop
and investigate the closeloop configuration.
Hope this helps.
Greg
2 件のコメント
Greg Heath
2016 年 1 月 4 日
Recommendation #1 for TIMESERIES DATA is to use DIVIDEBLOCK in order TO NOT SHUFFLE THE DATA!
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!