
Centroid of polyarea
1 回表示 (過去 30 日間)
古いコメントを表示
How to get a centroid of polyarea?
Here is my code.
Thanks.
figure, imshow('000445.png')
hold on
xy = [];
n = 0;
but = 1;
while but == 1
[xi,yi,but] = ginput(1);
plot(xi,yi,'r.')
n = n+1;
xy(:,n) = [xi;yi];
end
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
plot(xys(1,:),xys(2,:),'r-');
A = polyarea(xys(1,:),xys(2,:));
plot(xys(1,:),xys(2,:),'r-');
title (['Area = ' num2str(A)]);
axis image
hold off
0 件のコメント
採用された回答
Chandra Kurniawan
2012 年 1 月 9 日
Hi,
I modified your first code becomes :
I = imread('peppers.png');
[r c o] = size(I);
imshow(I); hold on;
xy = [];
n = 0;
but = 1;
while but == 1
[xi, yi, but] = ginput(1);
plot(xi, yi, 'r.');
n = n + 1;
xy(:, n) = [xi; yi];
end
t = 1 : n;
ts = 1 : 0.1 : n;
xys = spline(t, xy, ts);
plot(xys(1,:), xys(2,:), 'r-');
A = polyarea(xys(1,:), xys(2,:));
plot(xys(1,:), xys(2,:), 'r-');
title (['Area = ' num2str(A)]);
axis image
%hold off
Then, I create my own code.
J = logical(zeros(r, c));
xcoor = floor(xys(1,:));
ycoor = floor(xys(2,:));
for x = 1 : numel(xcoor)
J(ycoor(x),xcoor(x)) = 1;
end
J = imdilate(J,strel('square',20));
J = bwmorph(J,'thin',inf);
J = imfill(J,'holes');
stat = regionprops(J,'Centroid');
plot(stat.Centroid(1),stat.Centroid(2),'go',...
'markerfacecolor','b')
And the result is :

2 件のコメント
Sean de Wolski
2012 年 1 月 9 日
You could use poly2mask() instead of the dilation/skeletonization. I do not believe the method you are using would be correct at boundaries. I.e. where the strel is not fully represented on boundary of the image, the thinning operation will be shifted in and not centered since the strel was not centered at the edge.
Though regionprops/works for this, in two dimensions the formula is well defined:
http://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
その他の回答 (1 件)
Sean de Wolski
2012 年 1 月 9 日
Once you know area, A, and coordinates: x, y:
As = sum(A)/2;
x_bar = (sum((x(2:end)+x(1:end-1)).*A)*1/6)/As;
y_bar = (sum((y(2:end)+y(1:end-1)).*A)*1/6)/As;
2 件のコメント
THAMMISHETTI NIKESH
2012 年 11 月 12 日
x=[0 10 10 12 12 20 20 12 10 8 8 0 0]; y=[3 3 0 0 3 3 6 6 20 20 6 6 3]; As=polyarea(x,y); X_bar=0; Y_bar=0; h=length(x)-1; for a=1:h X_bar=(1/(6*As))*(x(a)+x(a+1))*(x(a)*y(a+1)-x(a+1)*y(a))+X_bar; Y_bar=(1/(6*As))*(y(a)+y(a+1))*(x(a)*y(a+1)-x(a+1)*y(a))+Y_bar; end
I used the above code, hope it helps you
参考
カテゴリ
Help Center および File Exchange で Data Exploration についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!