By including a moving window of fixed length in the input vector of MLP, is the Back-propagation ANN equivalent to NAR model?

1 回表示 (過去 30 日間)
If this is the case, how we can add the moving window? Supposing that the lag is equal to 3, for example:
N= lenght(data);
d=timestep ahead;
input = data( 1:N-d); % No transpose;
target = data( 1+d : N );
MSE00 = var(target',1) % Reference MSE
net = fitnet; % default H = 10
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 20/100;
[net tr output error ] = train(net, input, target);
%output = net(input);
error = target - output;
NMSE = mse(error)/MSE00 % Range [ 0 1 ]
R2 = 1- NMSE
Thanks

採用された回答

Greg Heath
Greg Heath 2015 年 11 月 15 日
1. When you insert code try to make sure it runs.
N= lenght(data); % ERROR
d=timestep ahead; % ERROR
2. Replace TRAIN with ADAPT
Hope this helps.
Thank you for formally accepting my answer
Greg
  2 件のコメント
coqui
coqui 2015 年 11 月 18 日
thank you Greg.
I only have 1 series, I have used FITNET. To continue beyond the original data (for example, 50 points) how I can do it?
Greg Heath
Greg Heath 2015 年 11 月 18 日
編集済み: Greg Heath 2015 年 11 月 18 日
I have several posts on predicting data beyond the target region. Let me know if you can't find any of them.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSequence and Numeric Feature Data Workflows についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by