By including a moving window of fixed length in the input vector of MLP, is the Back-propagation ANN equivalent to NAR model?
1 回表示 (過去 30 日間)
古いコメントを表示
If this is the case, how we can add the moving window? Supposing that the lag is equal to 3, for example:
N= lenght(data);
d=timestep ahead;
input = data( 1:N-d); % No transpose;
target = data( 1+d : N );
MSE00 = var(target',1) % Reference MSE
net = fitnet; % default H = 10
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 20/100;
[net tr output error ] = train(net, input, target);
%output = net(input);
error = target - output;
NMSE = mse(error)/MSE00 % Range [ 0 1 ]
R2 = 1- NMSE
Thanks
0 件のコメント
採用された回答
Greg Heath
2015 年 11 月 15 日
1. When you insert code try to make sure it runs.
N= lenght(data); % ERROR
d=timestep ahead; % ERROR
2. Replace TRAIN with ADAPT
Hope this helps.
Thank you for formally accepting my answer
Greg
2 件のコメント
Greg Heath
2015 年 11 月 18 日
編集済み: Greg Heath
2015 年 11 月 18 日
I have several posts on predicting data beyond the target region. Let me know if you can't find any of them.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!