How to train the classifier (using features extracted from images)?

2 ビュー (過去 30 日間)
revathi t
revathi t 2015 年 10 月 12 日
コメント済み: Image Analyst 2015 年 10 月 14 日
I would like to train the Random forest classifier( which has 2 classes- pathology class(Tp) and non pathology class(Tn)). I have separate images to train & test the classifier. For feature extraction I should use HOG, GLCM, GLRLM. How do I train & test the classifier Using these extracted features?? I don't have any .mat file to train the classifier, I see most of the code uses mat file to train the classifier. So I don't have any idea to proceed this. Please help me with this.

採用された回答

Image Analyst
Image Analyst 2015 年 10 月 12 日
Use the fitctree fucntion to create a classification tree based on the training data:
tModel = fitctree(xTrain, yTrain);
See what you can do with tModel by looking at its methods:
methods(tModel)
The resulting tree can be visualized with the view() function:
view(tModel, 'mode', 'graph');
New observations can be classified using the predict() function:
yPredicted = predict(tModel, newX);
The TreeBagger() function uses bootstrap aggregation ("bagging") to create an ensemble of classification trees.
tModel = TreeBagger(50, xTrain, yTrain); % Create new model based on 50 trees.
This is a more robust model.
  2 件のコメント
revathi t
revathi t 2015 年 10 月 14 日
Sir Could you explain me, what is xTrain & yTrain? (I have written the extracted features in train.xls)
Image Analyst
Image Analyst 2015 年 10 月 14 日
Those would be the values of HOG, GLCM, and GLRLM that you measured.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeClassification Ensembles についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by