Image Processing Noise differences

6 ビュー (過去 30 日間)
UJJWAL
UJJWAL 2011 年 12 月 19 日
移動済み: DGM 2023 年 2 月 20 日
Hi,
Suppose I want to add white gaussian noise to an image. I propose to do by following means :-
a) imnoise(I,'gaussian',0,0.25);
b) I = awgn(I,var(I(:))/0.25);
c) I = I + 0.25*randn(size(I));
Here I is a certain image.
What is difference between using the above statements ??

採用された回答

Wayne King
Wayne King 2011 年 12 月 19 日
J = imnoise(I,'gaussian',0,0.25);
J = I+0.5*randn(size(I));
For awgn(), your function syntax assumes the power of the input is 0 dBW, so you would need to do.
denom = -(var(I(:))/(10*log10(0.25)));
I = awgn(I,var(I(:))/denom);

その他の回答 (2 件)

Wayne King
Wayne King 2011 年 12 月 19 日
Hi, in
I = I +0.25*randn(size(t));
you get noise with a standard deviation of 0.25, not variance. If you want noise with a variance of 0.25, then you must do
I = I +0.5*randn(size(t));
that would be equivalent to:
imnoise(I,'gaussian',0,0.25);
The variance of a constant times a random variable is the constant squared times the variance of the random variable.
Finally, the actual variance of the additive Gaussian noise in:
I = awgn(I,var(I(:))/0.25);
depends on I, so it's not clear that you are really getting a variance of 0.25. For example:
I = randn(256,256);
Because var(I(:)) = 1.0551 (in this particular example)
Your call of
I = awgn(I,var(I(:))/0.25);
results in an additive WGN process with variance:
10^(-4.2203/10) = 0.3784
which is greater than you think.
  1 件のコメント
UJJWAL
UJJWAL 2011 年 12 月 19 日
移動済み: DGM 2023 年 2 月 20 日
Ok . So suppose the problem is to add a noise with a variance of 0.25 and mean of 0 and the noise is gaussian and additive.
What are the equivalent statements using imnoise, awgn and the first one to introduce such a noise ??

サインインしてコメントする。


Shaveta Arora
Shaveta Arora 2016 年 2 月 24 日
How to add gaussian noise of variance 10 by both methods?
  1 件のコメント
Image Analyst
Image Analyst 2016 年 2 月 24 日
Hint from the help:
Create a vector of 1000 random values drawn from a normal distribution with a mean of 500 and a standard deviation of 5.
a = 5;
b = 500;
y = a.*randn(1000,1) + b;
For you, a would be sqrt(10) and b would be 0, so
[rows, columns] = size(grayImage);
noisyArray = sqrt(10)*randn(rows, columns);
output = double(grayImage) + noisyArray;

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeImage Processing Toolbox についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by