Matrix Polynomial Equation solution

7 ビュー (過去 30 日間)
Maria
Maria 2011 年 12 月 12 日
I have been trying for some time to solve the equation: A*(T.^4)+B*T=C+D where A, B, C, D, and T are all matrices, and T.^4 here takes its matlab meaning of being each cell of T taken individually to the power of 4. I have been trawling the help guide and the internet for some way of solving such a polynomial equation with matrices, but I can't find anything. If anyone could give any suggestions I would be so very grateful. Many thanks, Maria

採用された回答

Dr. Seis
Dr. Seis 2011 年 12 月 12 日
I ran this as a test, and it looked like the value I randomly chose for "T" below matched the "TT" predicted by "fsolve". It looked like "C" and "D" were both known variables, so I assumed they were already summed together.
A = rand(3,3);
B = rand(3,3);
T = rand(3,3);
C_plus_D = A*(T.^4) + B*T;
TT = fsolve(@(TT)A*(TT.^4) + B*TT - C_plus_D, zeros(3,3));
  1 件のコメント
Maria
Maria 2011 年 12 月 14 日
Hi Elige!
I just wanted to say a huge thank you for this answer, which it seems (massive fingers crossed!) works in my code- so thank you!
Maria

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangePolynomials についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by