How to derive the state-space model in which the second derivative of the output of the system is needed?

7 ビュー (過去 30 日間)
Dear all:
My transfer function is:
Y/U = (a1s+a0)/(b4s^4+b3s^3+b2s^2+b1s); s is the laplace symbol, U is the single input, and Y is the single output.
Now I want a state-space model where I can have the second derivative of Y, which is dotdot(y) (dotdot is second derivative with respect to time).
Any help is appreciated!

採用された回答

Sebastian Castro
Sebastian Castro 2015 年 8 月 11 日
If the above is the TF for Y, then the second derivative of Y is just Ys^2, so the TF would be:
Ys^2/U = (a1s^3+a0s^2)/(b4s^4+b3s^3+b2s^2+b1s);
In MATLAB terms, you could either mathematically rework these into a state-space, or if you're lazy like me, make both the transfer functions and then convert to State-Space. NOTE: This requires Control System Toolbox.
Y = tf([a1 a0],[b4 b3 b2 b1 0]);
Ydd = Y*tf('s')^2;
G = [Y;Ydd];
Gss = ss(G);
... and there you have it, a state-space with 2 outputs: The first being Y, the second being Y doubel dot. Hope this helped.
- Sebastian
  6 件のコメント
Sebastian Castro
Sebastian Castro 2015 年 8 月 11 日
Oh yes, I thought you wanted both Y and Ydotdot.
In that case, just do G = ss(Ydd);

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDynamic System Models についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by