Info

この質問は閉じられています。 編集または回答するには再度開いてください。

Adding noise to a Gaussian

1 回表示 (過去 30 日間)
Nicole Bonino
Nicole Bonino 2015 年 8 月 8 日
閉鎖済み: Walter Roberson 2015 年 8 月 8 日
This problem deals with data fitting in the presence of noise.
a. Write a function Gaussian.m which will generate a 1D Gaussian function of the form y=A.*exp((-(x-x_0).^2)./s);, where s is the spread of the Gaussian, A is a constant factor and the mean x_0. The inputs to the function should be a vector of values (x), A, , and !. To test your function, plot the Gaussian corresponding to x= [-0.5:0.01:0.5-0.01], A = 100, s = 1, and x0= 0.
b. Add noise the Gaussian you generated above and plot the corresponding result. You may use the randn.m function in Matlab to generate a 100 random (noise) values between 0-1. Hence the new Gaussian function (Gnew = y + factor*noise) can be obtained. On the same graph, plot out Gnew for 4 different values of factor = {0.0, 0.5, 7.5, 15}.
  1 件のコメント
Walter Roberson
Walter Roberson 2015 年 8 月 8 日

回答 (0 件)

この質問は閉じられています。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by