MATLAB Answers

Solving Integro-differential equation with limited integral

30 ビュー (過去 30 日間)
ash
ash 2015 年 6 月 25 日
回答済み: Claudio Gelmi 2017 年 1 月 6 日
Hi,
How can I solve this equation numerically using matlab
w''''=w''*int(w'^2,0,1)
I tried using the standard form of ODE function, the only problem I faced is how to represent that limited integral Thanks

  0 件のコメント

サインインしてコメントする。

採用された回答

Torsten
Torsten 2015 年 6 月 25 日
Write your integro-differential equation as
w1'=w2
w2'=w3
w3'=w4
w4'=w3*integral_{t=0}^{t=1}w2^2(t') dt'
Then discretize the interval [0:1] in n subintervals 0=t(1)<t(2)<...<t(n)=1.
Compute the derivatives as
wj'(t(i))=(wj(t(i+1))-wj(t(i)))/dt (j=1,2,3,4)
and compute the integral using the trapezoidal rule.
You'll arrive at a polynomial system (order 3) of equations for the unknowns
wj(t(2)),wj(t(3)),...,wj(t(n)) (j=1,2,3,4)
which can be solved by fsolve, e.g.
No chance to use ODE45 in this case.
Another way might be to use ODE45 and iteratively adjust the value of the integral, but I'm not sure whether this method will converge.
Good luck !
Best wishes
Torsten.

  0 件のコメント

サインインしてコメントする。

その他の回答 (2 件)

ash
ash 2015 年 6 月 28 日
Thanks, sorry for the late reply
I tried to apply the technique you suggested (as much as I understood) using Euler 1st order, also my problem is a BVP (3 initial conditions and 1 BC) kindly find my code bellow The problem is that the code is too slow, and I can only solve small number of points
Is that what you advised me to do in our previous comment?, are there any enhancement for that code?
Thanks
syms a b
w=10;
T=30;
L=500;
F=1;
E=160e3;
I=2500;
A=T*w;
Npnts=11;
x=linspace(0,L/2,Npnts);
q1=sym(zeros(1,length(x)));
q2=sym(zeros(1,length(x)));
q3=sym(zeros(1,length(x)));
q4=sym(zeros(1,length(x)));
h=x(2)-x(1);
q1(1)=0;
q2(1)=0;
q3(1)=b;
q4(1)=-F/2/E/I;
for i=1:length(x)
q1(i+1)=q1(i)+h*q2(i);
q2(i+1)=q2(i)+h*q3(i);
q3(i+1)=q3(i)+h*q4(i);
q4(i+1)=q4(i)+h*q3(i)*a*A/2/L/I;
end
integ_a=sum(q2.^2)*h-a/2;
sol_ab=solve(integ_a==0,q2(i+1)==0,a,b);
sol_a=sol_ab.a;
sol_b=sol_ab.b;
sol_index=1;
q1=subs(q1,a,sol_a(sol_index));
q1=double(subs(q1,b,sol_b(sol_index)));

  3 件のコメント

ash
ash 2015 年 6 月 29 日
Any help?
Torsten
Torsten 2015 年 6 月 30 日
The system to solve is
(w1(t(i+1))-w1(t(i)))/h = w2(t(i))
(w2(t(i+1))-w2(t(i)))/h = w3(t(i))
(w3(t(i+1))-w3(t(i)))/h = w4(t(i))
(w4(t(i+1))-w4(t(i)))/h = [sum_{j=1}^{j=Npnts-1}(w2(t(i+1))+w2(t(i)))*h/2]*w3(t(i))
(i=1,Npnts-1)
These are 4*(Npts-1) equations in which you will have to include the boundary conditions.
You can use fsolve to solve this system of polynomial equations.
Best wishes
Torsten.
Torsten
Torsten 2015 年 6 月 30 日
Sorry, should read
(w4(t(i+1))-w4(t(i)))/h = [sum_{j=1}^{j=Npnts-1}(w2(t(j+1))+w2(t(j)))*h/2]*w3(t(i))
Best wishes
Torsten.

サインインしてコメントする。


Claudio Gelmi
Claudio Gelmi 2017 年 1 月 6 日
Take a look at this solver:
Article "IDSOLVER: A general purpose solver for nth-order integro-differential equations": http://dx.doi.org/10.1016/j.cpc.2013.09.008
Best wishes,
Claudio

  0 件のコメント

サインインしてコメントする。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by