Newtonian Mechanics vector solution needed to find the range of forces (P) that satisfy Fnetx = 0

40 ビュー (過去 30 日間)
% Find vector of P values to keep block in equilibrium
ramp.jpg
% Variables Given
m = 100; % mass, kg
angle_ramp = 15; % degrees
angle_bar = 20; % degrees
g = 9.81; % gravity (m/s^2)
coeff = 0.3; % coefficient of static friction
% Calculations
P = [-600:0.1:600]; % vector of range for P (Newtons)
W = m*g;
Px = P*cosd(angle_bar); Py = sind(angle_bar);
N = W*cosd(angle_ramp)-Py;
Fx = W*sind(angle_ramp); Fs = coeff*N;
% Find P values for Fnet(x) = 0
if P > 0 % pulling force
Fnetx = Px - Fx - Fs;
else % pushing force or zero force applied
Fnetx = Px - Fx + Fs;
end
find(Fnetx==0)
ans = 1×0 empty double row vector

採用された回答

Torsten
Torsten 2025 年 11 月 12 日 21:32
編集済み: Torsten 2025 年 11 月 12 日 22:08
Your search will never find a value for P for which Fnetx is exactly 0.
Better use "fsolve" to solve for the corresponding root of Fnetx(P) = 0.
P0 = 600;
P = fsolve(@fun,P0,optimset('Display','none'))
P = 516.3332
[res,Px,Py] = fun(P)
res = -7.9902e-08
Px = 485.1945
Py = 176.5964
P0 = -30;
P = fsolve(@fun,P0,optimset('Display','none'))
P = -36.2812
[res,Px,Py] = fun(P)
res = 3.4890e-10
Px = -34.0932
Py = -12.4089
function [Fnetx,Px,Py] = fun(P)
% Variables Given
m = 100; % mass, kg
angle_ramp = 15; % degrees
angle_bar = 20; % degrees
g = 9.81; % gravity (m/s^2)
coeff = 0.3; % coefficient of static friction
% Calculations
W = m*g;
Px = P*cosd(angle_bar); Py = P*sind(angle_bar);
N = W*cosd(angle_ramp)-Py;
Fx = W*sind(angle_ramp); Fs = coeff*N;
% Find P values for Fnet(x) = 0
if P > 0 % pulling force
Fnetx = Px - Fx - Fs;
else % pushing force or zero force applied
Fnetx = Px - Fx + Fs;
end
end
Or use
[~,idx] = min(Fnetx.^2);
P(idx)
at the end of your code to get an approximate value for P.

その他の回答 (2 件)

Doug Leaffer
Doug Leaffer 2025 年 11 月 12 日 21:44
Thank you @Torsten
I found another MATLAB code solution which is accurate as I checked it in Excel using Goal Seek
=> Block remains in equilibrium for -36.28 ≤ P ≤ 516.33 N
  4 件のコメント
Torsten
Torsten 2025 年 11 月 12 日 22:13
編集済み: Torsten 2025 年 11 月 12 日 22:17
The block cannot be in equilibrium at P = +572.6 N, it would move up the ramp if P > 516.33 N
Yes, you made a mistake when specifying Py in your code. I corrected that (see below).
Still I cannot follow your argumentation concerning the range for P, but I'm not a physicist.
Doug Leaffer
Doug Leaffer 2025 年 11 月 12 日 22:27
Thanks for correcting the Py mistake ! Appreciate that @Torsten

サインインしてコメントする。


Paul
Paul 2025 年 11 月 13 日 3:57
Here is an algebraic solution; I suspect one could do the whole thing symbolically and then sub the numbers at the end.
Note that my expression for Fnetx is different because, to my understanding, the relative motion resisted by the static friction depends on the sign of Px - Fx, not Px (nor P!) alone. That is, we need Px > Fx for the block to want to slide up the hill and Fx > Px for the block to want to slide down the hill. Comes up with the same solutions for the parameters for this problem.
Disclaimer: I haven't done statics in more time than I care to admit.
syms P real
m = 100; % mass, kg
angle_ramp = 15; % degrees
angle_bar = 20; % degrees
g = 9.81; % gravity (m/s^2)
coeff = 0.3; % coefficient of static friction
W = m*g;
Px = P*cosd(angle_bar); Py = P*sind(angle_bar);
N = W*cosd(angle_ramp) - Py;
Fx = W*sind(angle_ramp);
Fs = coeff*N;
Fnetx = Px - Fx - Fs*sign(Px-Fx);
figure
fplot(Fnetx,[-100,600]),grid
assume(Px-Fx > 0) % motion tends up the hill
Ppos = vpa(solve(Fnetx,P))
Ppos = 
516.33324748670646195665428956607
assume(Px-Fx < 0) % motion tends down the hill
Pneg = vpa(solve(Fnetx,P))
Pneg = 

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

製品


リリース

R2025b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by