1) Generate intermediate points in a set of X,Y while respecting the original points order. 2) Generate same number of points for 2 different set of X,Y with different sizes.

65 ビュー (過去 30 日間)
1) Generate intermediate points in a set of X,Y in matlab while respecting the original points order.
2) Generate same number of points for 2 different set of X,Y with different sizes.
I hope my question is clear.
Imagine I have 2 variables with totaly different sizes :
a=[2,1;2,2;1,4;-1,4;-2,1;-2,-2;0,-3;1.5,0];
b = [3,2;3,3;2,5;0,6;-2,5;-3,2;-3,-1;0,-4;2,-2];
I need to generate 2 variables of same dimensions (say 1000 points, Equidistant) from a and b. the first strating with a-start and the second with b-start.
3) I have something like this in 3D but hope an idea to do it for 2D will work also for 3D
Thank you
  3 件のコメント
Mohamad TOUT
Mohamad TOUT 2025 年 10 月 16 日 10:15
Hi,
I want a kind of interpolation of each curve separately.
The idea of resampling both curve should be based on same number of points and the starting points of each original curve.
Mathieu NOE
Mathieu NOE 2025 年 10 月 20 日 10:02
As always , my pleasure !
and we should also warmly thanks @John D'Errico for his marvelous Fex submissions

サインインしてコメントする。

採用された回答

Mathieu NOE
Mathieu NOE 2025 年 10 月 16 日 14:24
my turn to try something... with the help of interparc :
NB that nothing forces the two curves to be parallel (otherwise it would be better to start with a central line and then create the two "borders")
try with the different interpolation methods and pick the one you prefer
here also I took only N = 100 points so we can clearly see them on the plot, but you can opt for more if you want..
may I also point out that going from a very low sampling like 8 points to 1000 interpolated points leaves a lot or room to "interpret" what shape you want to follow (linear, polynomial - which order ?)
a=[2,1;2,2;1,4;-1,4;-2,1;-2,-2;0,-3;1.5,0];
b = [3,2;3,3;2,5;0,6;-2,5;-3,2;-3,-1;0,-4;2,-2];
plot(a(:,1),a(:,2),'ro','markersize',20);grid
hold on
plot(b(:,1),b(:,2),'gs','markersize',20),grid
% interpolate using parametric splines
N = 100;
pta = interparc(N,a(:,1),a(:,2),'pchip');
ptb = interparc(N,b(:,1),b(:,2),'pchip');
% Plot the result
plot(pta(:,1),pta(:,2),'r-*');
plot(ptb(:,1),ptb(:,2),'g-*');
hold off
grid on
axis equal
  2 件のコメント
John D'Errico
John D'Errico 2025 年 10 月 16 日 15:01
If the goal is equidistant points along an arc, interparc is the right tool. And it works in any number of dimensions. Of course, I may be biased. ;-)
Mohamad TOUT
Mohamad TOUT 2025 年 10 月 19 日 8:26
Thank you so much, Mathieu.
Thanks to all of you. This is exactly what I was looking for.
The results in my case study are truly surprising!

サインインしてコメントする。

その他の回答 (1 件)

Alan Stevens
Alan Stevens 2025 年 10 月 16 日 12:46
編集済み: Alan Stevens 2025 年 10 月 16 日 12:48
Something like this? (I've just used 50 interpolated points for clarity below). Choose your own interpolation type. The "equidistant" below is interpreted as equal angle separation.
a=[2,1;2,2;1,4;-1,4;-2,1;-2,-2;0,-3;1.5,0];
b = [3,2;3,3;2,5;0,6;-2,5;-3,2;-3,-1;0,-4;2,-2];
plot(a(:,1),a(:,2),'ro-',b(:,1),b(:,2),'bs-'),grid
hold on
% convert to polar coordinates
[tha,ra] = cart2pol(a(:,1),a(:,2));
[thb,rb] = cart2pol(b(:,1),b(:,2));
tha(tha<=0)=tha(tha<=0)+2*pi;
thb(thb<=0)=thb(thb<=0)+2*pi;
na = length(tha);
nb = length(thb);
n = 50; % Nbr of interpolated points
i = 1:n;
thetaa(i) = (tha(na)-tha(1))*(i-1)/(n-1) + tha(1);
thetab(i) = (thb(nb)-thb(1))*(i-1)/(n-1) + thb(1);
xa = interp1(tha,a(:,1),thetaa);
ya = interp1(tha,a(:,2),thetaa);
xb = interp1(thb,b(:,1),thetab);
yb = interp1(thb,b(:,2),thetab);
plot(xa,ya,'*:',xb,yb,'+:')
  2 件のコメント
Mathieu NOE
Mathieu NOE 2025 年 10 月 16 日 13:21
I wonder if the OP wanted something like a spline interpolation, and with equidistant with ds = sqrt(dx²+dy²) in mind ?
Mohamad TOUT
Mohamad TOUT 2025 年 10 月 16 日 13:28
Thanks for this idea.
but unfortunately this will no work for me. Maybe I gave a wrong data set as example.
Just try to add one point (outside the circle) at the end of b for example : 4,4. Then the interp1 will not work anymore.
//// Please imagine this problem like a F1 track with both set of points are the left and right side of the track :) \\\\

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeInterpolation についてさらに検索

製品


リリース

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by