Modelling a system of differential equations with recurrences in matlab

60 ビュー (過去 30 日間)
Austin
Austin 2025 年 10 月 12 日 15:06
編集済み: Torsten 2025 年 10 月 12 日 19:29
Trying to model a system in the form
a*u_n(t)'' + b*u_n(t) = k( v_n+1(t) + v_n-1(t) - 2u_n(t) )
c*v_n(t)'' + d*v_n(t) = k( u_n+1(t) + u_n-1(t) - 2v_n(t) )
a,b,c,d,k are all constants
Pretty sure this can only be done numerically
  5 件のコメント
Torsten
Torsten 2025 年 10 月 12 日 18:26
編集済み: Torsten 2025 年 10 月 12 日 18:33
Since the boundary conditions are defined by second-order differential equations for u_0, v_0, u_n and v_n, we need u_i(0), u_i'(0), v_i(0), v_i'(0) for i = 0,...,n.
You said we may assume u_i(0) = v_i(0) = 0 for i=1,...,n-1. So u_0(0),v_0(0),u_n(0),v_n(0) and all derivatives u_i'(0) and v_i'(0) at t = 0 ( (i = 0,...,n) are to be added to the problem description to make the system solvable.
Austin
Austin 2025 年 10 月 12 日 18:38
Of course, the i should be i=0..n not 1..n
Then for the derivatives u_i(0)' = 0.5, v_i(0)' = 0.3

サインインしてコメントする。

採用された回答

Torsten
Torsten 2025 年 10 月 12 日 19:00
編集済み: Torsten 2025 年 10 月 12 日 19:29
N = 20;
k = 1;
a = 1;
b = 1;
c = 1;
d = 1;
u0 = zeros(N,1);
udot0 = 0.5*ones(N,1);
v0 = zeros(N,1);
vdot0 = 0.3*ones(N,1);
y0 = [u0;udot0;v0;vdot0];
tspan = linspace(0,10,20);
[T,Y] = ode15s(@(t,y)fun(t,y,N,k,a,b,c,d),tspan,y0);
u = Y(:,1:N);
udot = Y(:,N+1:2*N);
v = Y(:,2*N+1:3*N);
vdot = Y(:,3*N+1:4*N);
function dydt = fun(t,y,N,k,a,b,c,d)
u = y(1:N);
udot = y(N+1:2*N);
v = y(2*N+1:3*N);
vdot = y(3*N+1:4*N);
dudt = zeros(N,1);
d2udt2 = zeros(N,1);
dvdt = zeros(N,1);
d2vdt2 = zeros(N,1);
dudt = udot;
dvdt = vdot;
%a*u_1(t)'' + b*u_1(t) = k( v_2(t) - u_1(t) )
%a*u_i(t)'' + b*u_i(t) = k( v_i+1(t) + v_i-1(t) - 2u_i(t) ) (2 <= i <= N-1)
%a*u_N(t)'' + b*u_N(t) = k( v_N-1(t) - u_N(t) )
d2udt2(1) = (-b*u(1)+k*(v(2)-u(1)))/a;
d2udt2(2:N-1) = (-b*u(2:N-1)+k*(v(3:N)+v(1:N-2)-2*u(2:N-1)))/a;
d2udt2(N) = (-b*u(N)+k*(v(N-1)-u(N)))/a;
%c*v_1(t)'' + d*v_1(t) = k( u_2(t) - v_1(t) )
%c*v_i(t)'' + d*v_i(t) = k( u_i+1(t) + u_i-1(t) - 2v_i(t) ) (2 <= i <= N-1)
%c*v_N(t)'' + d*v_N(t) = k( u_N-1(t) - v_N(t) )
d2vdt2(1) = (-d*v(1)+k*(u(2)-v(1)))/c;
d2vdt2(2:N-1) = (-d*v(2:N-1)+k*(u(3:N)+u(1:N-2)-2*v(2:N-1)))/c;
d2vdt2(N) = (-d*v(N)+k*(u(N-1)-v(N)))/c;
dydt = [dudt;d2udt2;dvdt;d2vdt2];
end
  1 件のコメント
Austin
Austin 2025 年 10 月 12 日 19:11
Thanks this was my first time encountering a system of equations like this so this helped a lot

サインインしてコメントする。

その他の回答 (1 件)

John D'Errico
John D'Errico 2025 年 10 月 12 日 15:51
編集済み: John D'Errico 2025 年 10 月 12 日 17:33
This is known as a delay differential equation. You will find any solvers for them starting with the letters dde.
help dde23
dde23 - Solve delay differential equations (DDEs) with constant delays This MATLAB function, where tspan = [t0 tf], integrates the system of delay differential equations y′(t)=f(t,y(t),y(t−τ1),...,y(t−τk)) over the interval specified by tspan, where τ1, ..., τk are constant, positive delays specified by delays. Syntax sol = dde23(ddefun,delays,history,tspan) sol = dde23(ddefun,delays,history,tspan,options) Input Arguments ddefun - System of delay differential equations to solve function handle delays - Time delays positive vector history - Solution history function handle | vector | structure tspan - Interval of integration two-element vector options - Integrator options structure array Output Arguments sol - Solution for evaluation structure array Examples openExample('matlab/DDE23ConstantDelaysExample') openExample('matlab/LocateZeroCrossingsOfDDEExample') See also ddesd, ddensd, ddeget, ddeset, deval Introduced in MATLAB before R2006a Documentation for dde23 doc dde23
You will convert the second order DDEs each into a pair of first order DDEs using the standard trick, so you will have a system of 4 DDEs. Standard trick:
If you have a second order equation of the form:
y''(x) = stuff
you convert it into a pair of first order equations by creating a new unknown function, I'll call it z, where z is just the currently unknown first derivative of y.
y'(x) = z(x)
z'(x) = stuff
The same will apply in your case, even with a DDE.
  1 件のコメント
Austin
Austin 2025 年 10 月 12 日 17:34
Sorry my system of equations were written out poorly each u_i, v_i i=1..n+1 is a funtion of t and has been updated in question. Not sure if dde would still be used in this case

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

タグ

製品


リリース

R2025b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by