How do I find second order implicit differentiation (d2y/dx2) of a function in MATLAB

8 ビュー (過去 30 日間)
Hello, I'm able to find 1st order (dy/dx) of a function, but if I try to do the process again on dy/dx it doesn't work to find d2y/dx2. I'm curious if anyone knows what the problem is or how to find d2y/dx2. I have a feeling that the problem is that I get dy/dx in terms of x and y(x) and not x and y, but I can't seem to change y(x) back to y when I use the sub command. This is the code:
syms x y DY DF y(x)
F=x^2+y^2==1;
dy=diff(y);
dx=diff(F,x);
DF=subs(dx,dy,DY);
dydx1=solve(DF,DY);
dydx=simplify(dydx1)
Gets the correct answer for dydx. I'd like to find d2y/dx2 now. The answer for d2y/dx2 is:
d2ydx2=-(x^2+y^2)/y^3
d2ydx2(x) = 
Aslo, using dydx = -Fx/Fy doesn't work for 1st order, unless more code is needed.
% F=x^2+y^2-1; dydx1=-diff(F,x)/diff(F,y); dydx=simplify(dydx1)
dydx(x) = 
Thank you.

採用された回答

Walter Roberson
Walter Roberson 2025 年 5 月 29 日
移動済み: Walter Roberson 2025 年 5 月 29 日
syms x y DY DF y(x)
F=x^2+y^2==1;
dy=diff(y);
dx=diff(F,x);
DF=subs(dx,dy,DY);
dydx1=solve(DF,DY);
dydx=simplify(dydx1)
dydx = 
temp = diff(dydx, x)
temp = 
simplify(subs(temp, diff(y), dydx))
ans = 
  1 件のコメント
rezheen
rezheen 2025 年 5 月 29 日
編集済み: rezheen 2025 年 5 月 29 日
Walter,
I added a little more to the code you provided to change back from y(x) to y and it works. Thank you!
d2ydx2=simplify(subs(temp, diff(y), dydx));
d2ydx2=subs(d2ydx2,y,'y')

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by