GPU coder check fail for deep learning cuDNN code generation and execution
6 ビュー (過去 30 日間)
古いコメントを表示
I run gpu checks on r2024a/b over Nvidia RTX4080 Laptop with all combinations of VS2017/2019/2022 + Cuda11.8-12.2/cuDNN8.7-9.2/TensorRT8.5.1.7-8.6.1.6, and always got the deepcodegen & deepcodeexec fails as below :
>>gpuEnvObj = coder.gpuEnvConfig('host');
gpuEnvObj.BasicCodegen = 1;
gpuEnvObj.BasicCodeexec = 1;
gpuEnvObj.DeepLibTarget = 'cudnn';
gpuEnvObj.DeepCodegen = 1;
gpuEnvObj.DeepCodeexec = 1;
results = coder.checkGpuInstall(gpuEnvObj)
Compatible GPU : PASSED
CUDA Environment : PASSED
Runtime : PASSED
cuFFT : PASSED
cuSOLVER : PASSED
cuBLAS : PASSED
cuDNN Environment : PASSED
Host Compiler : PASSED
Basic Code Generation : PASSED
Basic Code Execution : PASSED
Deep Learning (cuDNN) Code Generation: FAILED (GPU code generation failed with an error. View report for further information: View report)
results =
struct with fields:
gpu: 1
cuda: 1
cudnn: 1
tensorrt: 0
hostcompiler: 1
basiccodegen: 1
basiccodeexec: 1
deepcodegen: 0
tensorrtdatatype: 0
deepcodeexec: 0
The Error Report always shows as below :

0 件のコメント
回答 (1 件)
Hariprasad Ravishankar
2024 年 12 月 5 日
Hello,
I suspect that that the "GPU Coder Interface for Deep Learning Libraries" support package is not installed in your support package root.
Can you please inspect your support package root by executing:
installDir = matlabshared.supportpkg.getSupportPackageRoot
Can we try updating your support package root using the command
matlabshared.supportpkg.setSupportPackageRoot(installDir)
You can then try to reinstall the support package and rerun the coder.checkGpuInstall command.
8 件のコメント
Hariprasad Ravishankar
2024 年 12 月 18 日
That's unfortunate. We need to take a closer look at your setup. I definitely recommend creating a ticket with Technical Support.
参考
カテゴリ
Help Center および File Exchange で Get Started with GPU Coder についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!