Detecting storms from wave height data

2 ビュー (過去 30 日間)
Maria Francesca bruno
Maria Francesca bruno 2024 年 11 月 14 日
コメント済み: Star Strider 2024 年 11 月 19 日
I'm using the Image Analyst code to detect sea storms from wave height data using a threshold value as suggested by https://it.mathworks.com/matlabcentral/answers/2119581-detection-of-storms-from-precipitation-data#answer_1459176.
I fixed a threshold for wave height and a minimum storm duration.
Now I would like to modify the code to include small holes in the subsamples (for example 2 or more missing data) or few values below threshold. I would like to prevent storm splitting (see attached figure).
Thanks a lot to Image Anayst for his support.
load ('H.mat'); %3 hour data
threshold=1 %
% Find time periods with H >= threshold
stormPeriods = bwconncomp(H >= threshold);
props = regionprops(stormPeriods, H, 'Area', 'MeanIntensity','MaxIntensity',"SubarrayIdx");
values = [props.Area];
props = props(values*3 > 12 ); % storms with duration >12 h
A_cell = (struct2cell(props));
  1 件のコメント
Image Analyst
Image Analyst 2024 年 11 月 14 日
"include small holes in the subsamples (for example 2 or more missing data" <== So you want all NaN values to be considered as storms no matter how long the run of NaN's is?
"few values below threshold" <== like for example, what? 5 values below should be considered part of the storm on either side of that run of low values? 10 values? I guess we can just set a variable and you cann set it to whatever you want.
In your plot above, how many storms do you want there to be and where do they start and stop?

サインインしてコメントする。

採用された回答

Star Strider
Star Strider 2024 年 11 月 14 日
I am not certain what you want.
Try this —
load ('H.mat'); %3 hour data
whos('-file','H.mat')
Name Size Bytes Class Attributes H 67200x1 537600 double
threshold=1 %
threshold = 1
t = linspace(0, numel(H)-1, numel(H)); % Supply Missing Time Vector
Storms = H >= threshold;
Stormsa = [Storms; false];
StormStart = strfind(Stormsa(:).', [0 1])+1;
StormEnd = strfind(Stormsa(:).', [1 0]);
StormDur = StormEnd - StormStart
StormDur = 1×2174
0 6 13 5 9 0 3 12 17 1 13 11 1 0 1 0 1 19 3 12 6 2 0 2 5 0 3 11 5 2
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
StormDur2 = StormDur(StormDur > 1)
StormDur2 = 1×1258
6 13 5 9 3 12 17 13 11 19 3 12 6 2 2 5 3 11 5 2 11 5 8 3 5 10 15 3 19 9
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
b = fitdist(StormDur2(:), 'exponential')
b =
ExponentialDistribution Exponential distribution mu = 7.67409 [7.26707, 8.11646]
StormDurStats = [min(StormDur) max(StormDur) mean(StormDur) median(StormDur) std(StormDur) mode(StormDur)]
StormDurStats = 1×6
0 44.0000 4.5892 2.0000 6.0523 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
figure
histfit(StormDur2, 100, 'exponential')
grid
StormIdx = [StormStart(StormDur>1); StormEnd(StormDur>1)].';
StormSplitThreshold = mean(StormDur)
StormSplitThreshold = 4.5892
% StormIdx = StormIdx(1:end-1,:)
for k = 1:size(StormIdx,1)-1
% DD = (StormIdx(k+1,1) - StormIdx(k,2))
if (StormIdx(k+1,1) - StormIdx(k,2)) <= StormSplitThreshold
StormIdx(k+1,1) = StormIdx(k,2);
end
end
StormIdx
StormIdx = 1258×2
15 21 21 37 74 79 148 157 175 178 223 235 279 296 320 333 343 354 492 511
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[ts,Hs] = stairs(t, H);
format shortG
figure
stairs(t, H)
hold on
% patch([ts; flip(ts)], [zeros(size(Hs)); flip(Hs)], 'r', FaceAlpha=0.3, EdgeColor='r')
for k = 1:size(StormIdx,1)
idx = ts >= t(StormIdx(k,1)) & ts <= t(StormIdx(k,2));
[findidx1,findidx2] = bounds(find(idx));
StormTimes(k,:) = [findidx1,findidx2,ts(findidx1),ts(findidx2)];
% EndStormTimes = [k StormTimes(end,:)]
patch([ts(idx); flip(ts(idx))], [zeros(size(Hs(idx))); flip(Hs(idx))], 'r', FaceAlpha=0.5, EdgeColor='none', EdgeAlpha=0)
% plot(t(StormIdx(k,1) : StormIdx(k,2)), H(StormIdx(k,1) : StormIdx(k,2)), 'r.')
AUC(k,:) = [ts(findidx1) ts(findidx2) trapz(ts(idx(1:2:end)), Hs(idx(1:2:end)))];
end
Results = array2table(AUC, 'VariableNames',{'Start Time','End Time','Area'})
Results = 1258x3 table
Start Time End Time Area __________ ________ ____ 14 20 1.7 20 36 8.1 73 78 1.7 147 156 4.7 174 177 0.9 222 234 2.2 278 295 6 319 332 2.7 342 353 5.9 491 510 2.9 547 550 0.2 619 631 1.4 674 680 1.5 680 685 2.5 718 720 1.1 766 771 2.5
% StormTimes
hold off
grid
xlim([0 1E+3])
yline(threshold)
xlabel('Time (Units)')
ylabel('Height')
.
  2 件のコメント
Maria Francesca bruno
Maria Francesca bruno 2024 年 11 月 19 日
Thank you very much, this suggestion fits perfectly my case.
Star Strider
Star Strider 2024 年 11 月 19 日
My pleasure!
If my Answer helped you solve your problem, please Accept it!
.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMultirate Signal Processing についてさらに検索

製品


リリース

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by