Is the code for calculation of Vandermonde matrix correct along with codes to calculate filter matrix and coefficient polynomials for order N ?

13 ビュー (過去 30 日間)
The code for Vandermonde matrix V
for N = 10
x = 0:N; % D values from 0 to 10
V =fliplr(vander(x)) ;
end% Vandermonde matrix with powers increasing from left to right
disp('The Vandermonde Matrix V:')
disp(V);
Calculating Z
Q = inv(V);
%%
disp('Filter Coefficient Matrix Q:');
disp(Q);
Calculating C
% Step 4: Calculate the Coefficient Polynomials C_k(z) for each k by multiplying Q and z
c = Q .* z;
% Display the coefficients
disp('Coefficient Polynomials C_k(z) for each k:');
for k = 0:N
fprintf('C_%d(z): %f\n', k, c(k+1));
end
for Z:
syms z
Z = [1 z^-1 z^-2 z^-3 z^-4 z^-5 z^-6 z^-7 z^-8 z^-9 ].';
t = iztrans(Z);
Please could you suggest alternatives to correct or modify this code ? Is it possible to develop them as functions in MATLAB?
  1 件のコメント
Walter Roberson
Walter Roberson 2024 年 10 月 21 日
I think it likely that you are intended to calculate the vandermode matrix yourself, instead of calling vander()

サインインしてコメントする。

回答 (1 件)

Umang Pandey
Umang Pandey 2024 年 10 月 29 日
Hi Rohitashya,
From what I understand, you want to generate the Vandermode matrix as mentioned in the image and abstract out all the calculations within matlab functions.
1) You don't need to run a loop to obtain the Vnadermode matrix, "vander" itself generates the entire matrix. You can refer to this documentation for details : https://www.mathworks.com/help/matlab/ref/vander.html#bubf_mp-2
x = 0:N;
V = fliplr(vander(x));
2) Yes, you can create functions for obtaining these matrices, passing the other required matrices/values as parameters. Here are a few examples:
function V = generateVandermonde(N)
x = 0:N; % Values from 0 to N
V = fliplr(vander(x)); % Vandermonde matrix with powers increasing from left to right
end
% ---------------------------------------------------------
function Q = calculateInverse(V)
Q = inv(V);
end
% ---------------------------------------------------------
function c = calculateCoefficients(Q, z)
z = zeros(N+1, 1);
for k = 0:N
z(k+1) = 1 / (1^k); % z = [1, z^-1, z^-2, ..., z^-N]
end
c = Q * z; % Matrix multiplication
end
Best,
Umang

カテゴリ

Help Center および File ExchangeMATLAB についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by