Explicit method for Allen-Cahn equation

3 ビュー (過去 30 日間)
Erm
Erm 2024 年 10 月 1 日
コメント済み: Erm 2024 年 10 月 1 日
The plot of the equation must start at x=-1 and end at x=1. but mu result did not show that?
clear all;
clc;
maxk = 1000;
T = 0.10;
n = 50;
L = 2; % Length of the spatial domain [−1, 1]
Nx = 400; % Number of spatial grid points
dx = L / (Nx - 1); % Spatial step size
dt = T/maxk;
T = 1; % Final time
Nt = round(T / dt); % Number of time steps
a = 0.0001;
r = a * dt / (dx * dx); % Diffusion factor for explicit scheme
% Initial condition
x = linspace(-1, 1, n+1);
u = zeros(n+1, maxk+1);
u(:,1) = x.^2 .* cos(pi * x);
% Implementation of the explicit method for Allen-Cahn equation
for t = 1:maxk
% Internal points
for i = 2:n
u(i, t+1) = u(i, t) + r * (u(i-1, t) - 2 * u(i, t) + u(i+1, t)) ...
+ dt * (5 * u(i, t)^3 - 5 * u(i, t));
end
% Periodic boundary conditions
u(1, t+1) = u(end-1, t+1); % Periodic condition for first point
u(end, t+1) = u(2, t+1); % Periodic condition for last point
end
% Plot results
figure; % Create a new figure
xx = linspace(-1, 1, 100);
t_values = [0, 0.2, 0.4, 0.6, 0.8]; % Time values to plot
plot(x, u(:,1), '-', x, u(:,round(maxk*0.2)), '-', x, u(:,round(maxk*0.4)), '-', x, u(:,round(maxk*0.6)), '-', x, u(:,end), '-');
xlabel('x');
ylabel('u(x,t)');
grid on;
legend('t = 0', 't = 0.2', 't = 0.4', 't = 0.6', 't = 0.8');
hold off;
  1 件のコメント
Torsten
Torsten 2024 年 10 月 1 日
Did you read somewhere that you need a boundary condition on the gradients of u ? In my opinion, u(-1,t) = u(1,t) suffices to fix a solution.

サインインしてコメントする。

採用された回答

Torsten
Torsten 2024 年 10 月 1 日
xstart = -1.0;
xend = 1.0;
nx = 401;
x = linspace(xstart,xend,nx).';
dx = x(2)-x(1);
tstart = 0.0;
tend = 1.0;
nt = 10;
tspan = linspace(tstart,tend,nt);
u0 = x.^2.*cos(pi*x);
D = 1e-4;
[T,U] = ode15s(@(t,u)fun(t,u,D,nx,dx),tspan,u0);
plot(x,[U(1,:);U(end,:)])
function dudt = fun(t,u,D,nx,dx)
ufull = [u(end-1);u;u(2)];
dudt = D*(ufull(3:end)-2*ufull(2:end-1)+ufull(1:end-2))/dx^2-5*ufull(2:end-1).^3+5*ufull(2:end-1);
end
  4 件のコメント
Torsten
Torsten 2024 年 10 月 1 日
編集済み: Torsten 2024 年 10 月 1 日
On your code why you wrote D = 1e-4
I prefer the scientific notation for small numbers. Think about how many 0's you had to write if D was 1e-10 instead of 1e-4 :-)
Erm
Erm 2024 年 10 月 1 日
got it. thank you.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGet Started with Curve Fitting Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by