Cannot get fmincon to work

2 ビュー (過去 30 日間)
ANTONIO MANUEL MORON PARDO
ANTONIO MANUEL MORON PARDO 2024 年 9 月 29 日
編集済み: Torsten 2024 年 9 月 29 日
Hello, I am trying to find the max value of a function of 5 variables with all of them constrained between 2 values. However, I do not have experience using this function and I can't find any good information to use it properly in this scenario either in the MatLab help page, nor in any online tutorial.
As you can see in the code, the function I want to optimize is P, and the variables are V, na, nd, wn and wp. (And yes, I am aware that I may have overused the '.' operator, I was getting the same error over and over again and I decided to nuke it since I don't really care about resources in this case.)
Apologies if the code is too messy to understand.
clear
close
clc
format long
%% Variables
dp = 11.6;
taup = 3710e-6;
dn = 2;
taun = 371e-6;
Jl = 50e-3;
ni = 9.696e9;
q = 1.602176634e-19;
k = 1.3880649e-23;
T = 300;
ep = 1.035918e-12;
vint = @(na,nd) k.*T/q.*log((na.*nd)./ni^2);
xn = @(na,nd) sqrt((2.*ep.*vint(na,nd).*na)./(q.*nd.*(na+nd)));
xp = @(na,nd) sqrt((2.*ep.*vint(na,nd).*nd)./(q.*na.*(na+nd)));
dnxp = @(V,na) ni^2./na.*(exp(q*V./(k*T))-1);
dpxn = @(V,nd) ni^2./nd.*(exp(q*V./(k*T))-1);
%% Functions
C1 = @(V,na,nd,wn) dnxp(V,na)./(-exp((-2.*wn-xp(na,nd))./sqrt(dn*taun))+exp(xp(na,nd)./sqrt(dn*taun)));
C3 = @(V,na,nd,wp) dpxn(V,nd)./(exp(-xn(na,nd)./sqrt(taup*dp))-exp((2.*wp+xn(na,nd))./sqrt(taup*dp)));
Jn = @(x,V,na,nd,wn) q*sqrt(dn/taun).*C1(V,na,nd,wn).*(exp((-2.*wn-x)./sqrt(dn*taun))+exp(x./sqrt(dn*taun)));
Jp = @(x,V,na,nd,wp) -q*sqrt(dp/taup).*C3(V,na,nd,wp).*(exp(x./sqrt(taup*dp))+exp((2.*wp-x)./sqrt(taup*dp)));
Jd = @(V,na,nd,wn,wp) Jp(-xn(na,nd),V,na,nd,wn)+Jn(xp(na,nd),V,na,nd,wp);
J = @(V,na,nd,wn,wp) Jl-Jd(V,na,nd,wn,wp);
P = @(V,na,nd,wn,wp) J(V,na,nd,wn,wp).*V;
%% Boundaries
wn = [0.05e-4, 0.75e-4];
wp = [100e-4, 200e-4];
nd = [1e18, 5e20];
na = [1e14, 1e16];
V = [0, 0.52];
P0 = [(V(1)+V(2))/2; (wn(1)+wn(2))/2; (wp(1)+wp(2))/2; (nd(1)+nd(2))/2; (na(1)+na(2))/2];
%% Optimization
mx = fmincon(-P(V,wn,wp,nd,na),P0,[],[],[],[],[min(V),wn(1),wp(1),nd(1),na(1)],[max(V),wn(2),wp(2),nd(2),na(2)]);

採用された回答

Torsten
Torsten 2024 年 9 月 29 日
編集済み: Torsten 2024 年 9 月 29 日
clear
close
clc
format long
%% Variables
dp = 11.6;
taup = 3710e-6;
dn = 2;
taun = 371e-6;
Jl = 50e-3;
ni = 9.696e9;
q = 1.602176634e-19;
k = 1.3880649e-23;
T = 300;
ep = 1.035918e-12;
vint = @(na,nd) k.*T/q.*log((na.*nd)./ni^2);
xn = @(na,nd) sqrt((2.*ep.*vint(na,nd).*na)./(q.*nd.*(na+nd)));
xp = @(na,nd) sqrt((2.*ep.*vint(na,nd).*nd)./(q.*na.*(na+nd)));
dnxp = @(V,na) ni^2./na.*(exp(q*V./(k*T))-1);
dpxn = @(V,nd) ni^2./nd.*(exp(q*V./(k*T))-1);
%% Functions
C1 = @(V,na,nd,wn) dnxp(V,na)./(-exp((-2.*wn-xp(na,nd))./sqrt(dn*taun))+exp(xp(na,nd)./sqrt(dn*taun)));
C3 = @(V,na,nd,wp) dpxn(V,nd)./(exp(-xn(na,nd)./sqrt(taup*dp))-exp((2.*wp+xn(na,nd))./sqrt(taup*dp)));
Jn = @(x,V,na,nd,wn) q*sqrt(dn/taun).*C1(V,na,nd,wn).*(exp((-2.*wn-x)./sqrt(dn*taun))+exp(x./sqrt(dn*taun)));
Jp = @(x,V,na,nd,wp) -q*sqrt(dp/taup).*C3(V,na,nd,wp).*(exp(x./sqrt(taup*dp))+exp((2.*wp-x)./sqrt(taup*dp)));
Jd = @(V,na,nd,wn,wp) Jp(-xn(na,nd),V,na,nd,wn)+Jn(xp(na,nd),V,na,nd,wp);
J = @(V,na,nd,wn,wp) Jl-Jd(V,na,nd,wn,wp);
P = @(V,na,nd,wn,wp) J(V,na,nd,wn,wp).*V;
%% Boundaries
wn = [0.05e-4, 0.75e-4];
wp = [100e-4, 200e-4];
nd = [1e18, 5e20];
na = [1e14, 1e16];
V = [0, 0.52];
% Either use the order of variables like in the vector of initial
% values and lower and upper bounds in the call to PP or
% change the order of the variables in the initial value vector P0 and
% in the lower and upper bounds to (V,na,nd,wn,wp) instead of (V,wn,wp,nd,na).
% I did the first, but I recommend the last (commented out) for clarity reasons.
P0 = [(V(1)+V(2))/2; (wn(1)+wn(2))/2; (wp(1)+wp(2))/2; (nd(1)+nd(2))/2; (na(1)+na(2))/2];
PP = @(p)-P(p(1),p(4),p(5),p(3),p(2));
lb = [min(V),wn(1),wp(1),nd(1),na(1)];
ub = [max(V),wn(2),wp(2),nd(2),na(2)];
%P0 = [(V(1)+V(2))/2; (na(1)+na(2))/2;(nd(1)+nd(2))/2;(wn(1)+wn(2))/2; (wp(1)+wp(2))/2 ];
%PP = @(p)-P(p(1),p(2),p(3),p(4),p(5));
%lb = [V(1),na(1),nd(1),wn(1),wp(1)];
%ub = [V(2),na(2),nd(2),wn(2),wp(2)];
-PP(P0)
ans =
0.012999986747818
%% Optimization
mx = fmincon(PP,P0,[],[],[],[],lb,ub);
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
-PP(mx)
ans =
0.024608689523057
V = mx(1)
V =
0.496682392530346
wn = mx(2)
wn =
4.000455217613459e-05
wp = mx(3)
wp =
0.015183822985277
nd = mx(4)
nd =
2.505000000000000e+20
na = mx(5)
na =
5.050000000000000e+15
%V = mx(1)
%na = mx(2)
%nd = mx(3)
%wn = mx(4)
%wp = mx(5)
  1 件のコメント
ANTONIO MANUEL MORON PARDO
ANTONIO MANUEL MORON PARDO 2024 年 9 月 29 日
編集済み: ANTONIO MANUEL MORON PARDO 2024 年 9 月 29 日
You are a legend. Literally have no idea how much you just saved me and my partner. THANK YOU!!!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSurrogate Optimization についてさらに検索

製品


リリース

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by