Numerical solution for the heat equation does not match the exact solution

2 ビュー (過去 30 日間)
Erm
Erm 2024 年 9 月 4 日
コメント済み: Torsten 2024 年 9 月 5 日
I write a matlab code for the problem, and i want to compare the numerucal and the exact solution at t=0.5 but the graph of the soultions are very different.
The problem is in the following:
% Parameters
L = 5; % Length of the rod
T = 1; % Total time
Nx = 100; % Number of spatial points
Nt = 500; % Number of time steps
alpha = 0.01; % Thermal diffusivity
% Discretization
dx = 0.1; % Spatial step size
dt = 0.04; % Time step size
r = alpha * dt / dx^2; % Stability parameter for the scheme
% Initial condition
x = linspace(0, L, Nx);% generates Nx points. The spacing between the points is (L-0)/(Nx-1).
u = cos(x-0.5); % initial condition
% Preallocate solution matrix
U = zeros(Nx, Nt+1); % returns an Nx-by-Nt matrix of zeros
U(:,1) = u; %extracts all the elements from the first column of matrix
% Time-stepping loop
for n = 1:Nt
% Update the solution using explicit scheme for the Heat Equation
for i = 2:Nx-1
U(i,n+1) = U(i,n) + r * (U(i+1,n) - 2*U(i,n) + U(i-1,n));
end
end
Numerical_sol = U
% Plot results
t = linspace(0, T, Nt+1);
[X, T] = meshgrid(x, t);
% Exact solution
Exact= @(x, t) exp(-t) .* cos(pi * x - 0.5 * pi);
figure;
mesh(X, T, U');
xlabel('x');
ylabel('t');
zlabel('u(x,t)');
title('Heat Equation Solution');
figure
plot(x, U(:,1), 'o');
  2 件のコメント
John D'Errico
John D'Errico 2024 年 9 月 5 日
You accepted the answer to this question. Then you asked it just again, 42 minutes ago. I closed the duplicate question, since it asks nothing you should not have learned here.
Torsten
Torsten 2024 年 9 月 5 日
I didn't know that you are the Website Master taking the right to delete questions and answers that are actually in flow.

サインインしてコメントする。

採用された回答

Torsten
Torsten 2024 年 9 月 4 日
移動済み: Torsten 2024 年 9 月 4 日
I cannot believe that the value for alpha has no influence on the solution.
So I guess that the exact solution maybe holds for alpha = 1.
  10 件のコメント
Torsten
Torsten 2024 年 9 月 4 日
編集済み: Torsten 2024 年 9 月 4 日
The exact solution for the differential equation
du/dt = alpha * d^2u/dx^2
with initial condition
u(0,x) = cos(pi*(x-0.5))
and boundary conditions
u(t,0) = u(t,1) = 0
is given by
uexact(t,x) = exp(-alpha*pi^2*t) * cos(pi*(x-0.5))
That's the function you have to compare the numerical solution with.
syms x t alpha pi
u = exp(-alpha*pi^2*t) * cos(pi*(x-0.5));
diff(u,t)
ans = 
alpha*diff(u,x,2)
ans = 
Erm
Erm 2024 年 9 月 4 日
Thanks a lot

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by