paretosearch does not satisfy nonlinear constraints
6 ビュー (過去 30 日間)
古いコメントを表示
I want to make V<=0.001 at a position where Wn=1, but the non-linear constraint cannot do it. I am sure there is this answer. The following is my program。
clear;
fun = @object1;
nonlcon = @unitdisk52;
nvar=5;
lb = [0,0,0,0,0];
ub = [1,1,1,2*pi,2*pi];
A = [0 0 0 -1 0;0 0 0 1 -1];
b = [0;0];
Aeq = [1 1 1 0 0];
beq = [1];
opts = optimoptions(@paretosearch,'PlotFcn','psplotparetof','ParetoSetChangeTolerance',1e-3);
[x,fval,exitflag,output] = paretosearch(fun,nvar,A,b,Aeq,beq,lb,ub,nonlcon,opts)
% max_iter = 100;
% for iter = 1:max_iter
% opts = optimoptions("gamultiobj","PlotFcn","gaplotpareto",...
% "PopulationSize",100, 'ParetoFraction', 0.60,"ConstraintTolerance",1e-2);
% [x,fval,exitflag,output] = gamultiobj(fun,nvar,A,b,Aeq,beq,lb,ub,nonlcon,opts) %mo
% [c,ceq] =unitdisk52(x)
% d=pi;
% e=2*pi;
% Wn=x(1,4)+(x(1,5)-x(1,4))*0.5;
% V=sqrt((x(1,1)+(x(1,2)*cos(Wn*d))+(x(1,3)*...
% cos(Wn*e))).^2+(x(1,2)*sin(Wn*d)+...
% x(1,3)*sin(Wn*e)).^2)
% if (exitflag ==1) && V<0.05
% break;
% end
% end
% opts = optimoptions("gamultiobj","PlotFcn","gaplotpareto",...
% "PopulationSize",100, 'ParetoFraction', 0.60,"ConstraintTolerance",1e-2);
% [x,fval,exitflag,output] = gamultiobj(fun,nvar,A,b,Aeq,beq,lb,ub,nonlcon,opts) %mo
%% curve test
figure;
% length(x)
gg=1:1:length(x);
Wn=0:0.001:2;
A0=x(gg,1);
A1=x(gg,2);
A2=x(gg,3);
t1=x(gg,4);
t2=x(gg,5);
% t1=x(gg,6);
% t2=x(gg,7);
C=A0+(A1.*cos(Wn.*t1))+(A2.*cos(Wn.*t2));
S=A1.*sin(Wn.*t1)+A2.*sin(Wn.*t2);
V=sqrt(C.^2+S.^2);
plot(Wn,V)
yline(0.05,'-.k');
array1=zeros(1,length(gg));
% for gg=1:60
% WL=find(V(gg,:)<=0.05,1,'first');
% WH=find(Wn(1,:)>=1&V(gg,:)>=0.05001,1,'first')-1;
% array1(1,gg)=Wn(1,WH)-Wn(1,WL);
% end
% trapz(V);
% plot(Wn,V)
% [row1,col1]=find(V<=0.05,1,'first');
% [row2,col2]=find(Wn>=1&V>0.0500000000001,1,'first');
% I=Wn(row2,col2-1)-Wn(row1,col1)
% yline(0.05,'-.k');
hold on
function f=object1(x)
%Gaussian+面積
Wn=0:0.001:2;
V=sqrt((x(1)+(x(2)*cos(Wn*x(4)))+(x(3)*...
cos(Wn*x(5)))).^2+(x(2)*sin(Wn*x(4))+...
x(3)*sin(Wn*x(5))).^2);
% guassian = normpdf(Wn,1,0.2);
%頻率寬度倒數
% [col1]=find(V<=0.05,1,'first');
% [col2]=find(Wn>1&V>0.05000001,1,'first');
% I=Wn(1,col2-1)-Wn(1,col1);
f1=x(5);
% f2=1./I;
f2=trapz(V)/2000;
f=[f1 f2];
end
function [c,ceq] =unitdisk52(x)
Wn=1;
Cn=((x(1))+(x(2)*cos(Wn.*x(4)))+(x(3)*cos(Wn.*x(5)))).^2;
Sn=((x(2)*sin(Wn.*x(4)))+(x(3)*sin(Wn.*x(5)))).^2;
c=[(sqrt(Cn+Sn)-0.001)];
ceq=[];
x;
end
3 件のコメント
Walter Roberson
2024 年 8 月 26 日
Testing by deactivating Aeq and beq, and later select the locations that fit Aeq and beq:
fun = @object1;
nonlcon = @unitdisk52;
nonlcon = [];
nvar=5;
lb = [0,0,0,0,0];
ub = [1,1,1,2*pi,2*pi];
A = [0 0 0 1 -1];
b = [0];
Aeq_ = [1 1 1 0 0];
beq_ = [1];
Aeq = [];
beq = [];
opts = optimoptions(@paretosearch,'PlotFcn','psplotparetof','ParetoSetChangeTolerance',1e-3);
[x,fval,exitflag,output] = paretosearch(fun,nvar,A,b,Aeq,beq,lb,ub,nonlcon,opts)
format long g
mask2 = abs(x * Aeq_.' - beq_.') <= 0.0001;
x_match = x(mask2, :)
fval_match = fval(mask2)
This one match is pretty much at the boundary conditions, except that it has negative components for x_match while lb for x_match should be strictly zero.
function f=object1(x)
%Gaussian+面積
Wn=0:0.001:2;
V=sqrt((x(1)+(x(2)*cos(Wn*x(4)))+(x(3)*...
cos(Wn*x(5)))).^2+(x(2)*sin(Wn*x(4))+...
x(3)*sin(Wn*x(5))).^2);
% guassian = normpdf(Wn,1,0.2);
%頻率寬度倒數
% [col1]=find(V<=0.05,1,'first');
% [col2]=find(Wn>1&V>0.05000001,1,'first');
% I=Wn(1,col2-1)-Wn(1,col1);
f1=x(5);
% f2=1./I;
f2=trapz(V)/2000;
f=[f1 f2];
end
function [c,ceq] =unitdisk52(x)
Wn=1;
Cn=((x(1))+(x(2)*cos(Wn.*x(4)))+(x(3)*cos(Wn.*x(5)))).^2;
Sn=((x(2)*sin(Wn.*x(4)))+(x(3)*sin(Wn.*x(5)))).^2;
c=[(sqrt(Cn+Sn)-0.001)];
ceq=[];
x;
end
採用された回答
Torsten
2024 年 8 月 26 日
編集済み: Torsten
2024 年 8 月 26 日
You may get feasible initial points if you run this code before calling "paretosearch" (maybe for different x0 to get several feasible points). The solution vectors can then be used in the call to "paretosearch" in the options structure as "InitialPoints".
lb = [0,0,0,0,0];
ub = [1,1,1,2*pi,2*pi];
A = [0 0 0 1 -1];
b = [0];
Aeq = [1 1 1 0 0];
beq = [1];
x0 = [1/3,1/3,1/3,1,2];
[sol1,fval] = fmincon(@obj,x0,A,b,Aeq,beq,lb,ub);
x0 = [0.7 0.1 0.2 50 60];
[sol2,fval] = fmincon(@obj,x0,A,b,Aeq,beq,lb,ub);
fun = @object1;
nonlcon = @unitdisk52;
nvar=5;
opts = optimoptions(@paretosearch,'PlotFcn','psplotparetof','ParetoSetChangeTolerance',1e-3,'InitialPoints',[sol1;sol2]);
[x,fval,exitflag,output] = paretosearch(fun,nvar,A,b,Aeq,beq,lb,ub,nonlcon,opts)
figure;
% length(x)
gg=1:1:length(x);
Wn=0:0.001:2;
A0=x(gg,1);
A1=x(gg,2);
A2=x(gg,3);
t1=x(gg,4);
t2=x(gg,5);
% t1=x(gg,6);
% t2=x(gg,7);
C=A0+(A1.*cos(Wn.*t1))+(A2.*cos(Wn.*t2));
S=A1.*sin(Wn.*t1)+A2.*sin(Wn.*t2);
V=sqrt(C.^2+S.^2);
plot(Wn,V)
yline(0.05,'-.k');
function value = obj(x)
Wn=1.5;
Cn=((x(1))+(x(2)*cos(Wn.*x(4)))+(x(3)*cos(Wn.*x(5)))).^2;
Sn=((x(2)*sin(Wn.*x(4)))+(x(3)*sin(Wn.*x(5)))).^2;
value=sqrt(Cn+Sn);
end
function f=object1(x)
%Gaussian+面積
Wn=0:0.001:2;
V=sqrt((x(1)+(x(2)*cos(Wn*x(4)))+(x(3)*...
cos(Wn*x(5)))).^2+(x(2)*sin(Wn*x(4))+...
x(3)*sin(Wn*x(5))).^2);
% guassian = normpdf(Wn,1,0.2);
%頻率寬度倒數
% [col1]=find(V<=0.05,1,'first');
% [col2]=find(Wn>1&V>0.05000001,1,'first');
% I=Wn(1,col2-1)-Wn(1,col1);
f1=x(5);
% f2=1./I;
f2=trapz(V)/2000;
f=[f1 f2];
end
function [c,ceq] =unitdisk52(x)
Wn=1.5;
Cn=((x(1))+(x(2)*cos(Wn.*x(4)))+(x(3)*cos(Wn.*x(5)))).^2;
Sn=((x(2)*sin(Wn.*x(4)))+(x(3)*sin(Wn.*x(5)))).^2;
c=[(sqrt(Cn+Sn)-0.001)];
ceq=[];
x;
end
0 件のコメント
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!